学年

教科

質問の種類

物理 高校生

(3)の問題で浮力の向きが図のようになる理由を教えてください!

物理2次特編3回目 時間:20~30分 1) Po 図のような熱気球がある。風船部分の体積をV, 全体の 質量を Mとする(風船内の空気の質量は含まない)。風船内 の温度は大気の温度とは無関係に自由に制御できる一方, 風船部分には空気の出入りロがあり,風船内の圧力は常に 大気と同じ値に維持される。風船内部の空気を加熱すると, 大気と比べて密度が低くなるため,熱気球は遅力を得る。 地表付近の大気は, 絶対温度To, 圧力 P。であった。気体 定数をR, 空気のモル質量(1mol 当たりの質量)をm, 重 カ加速度の大きさをgとする。以下では, 風船部分の体積Vは一定であり,風船部分以 外からの浮力はないものとする。また, 気球の高さは十分小さく,風船内の空気の圧力は 一様であるとみなしてよい。空気は理想気体として取り扱うことができるものとして,次 の問いに答えよ。 V M M To, Po ア 2 n 初め,風船内の空気は大気と同じ温度であり, 熱気球は浮上しておらず, 地面に接して いた。 Po= (1) 風船内の空気の質量を To,Po, m, R, Vを用いて表せ。 (2) 地表付近の大気の密度 PoをTo, Po, m, Rを用いて表せ。 (3) 風船内の空気の温度をゆっくりと上げていくと, ある温度で熱気球が地面から離れ た。このときの風船内の空気の密度 p」を Po, V, Mを用いて表せ。また,このとき の風船内の空気の温度T,を Po, P1, T,を用いて表せ。 (4) 風船内の空気の温度をどれほど上げることができたとしても,熱気球の質量が大き すぎれば浮上しない。すなわち, 熱気球が浮上することができるとき, その質量 Mは ある値 M。より小さくならなくてはならない。M。を Po, V, gのうち必要なものを用 いて表せ。 (5) To=300 K, Po=1000 hPa, V=2000 m° のとき, M,を計算せよ。 必要なら g=9.8 m/s?, m=29 g/mol, R=8.3 J/(mol-K) を用いよ。有効数字1桁まで求め, 解答には単位も付すこと。 c3) Pit 次に,浮上し始める温度T, が一T。となるように熱気球の質量Mを調整した。 (6) このときの熱気球の質量 MをTo, Po, m, R, Vのうち必要なものを用いて表せ。 その後,風船内の空気の温度をT,よりわずかに上げ, 熱気球が浮上した後すぐに空気 の温度をT,に戻した。すると, 熱気球は地表から h(>0)の高さまで上昇し, 静止した。 大気の圧力と温度は高所では減少することが知られている。地表付近では, 地表からの高 さxの関数として大気の圧力 P(x) と温度T(x) を以下のように定数αおよびβを用いて 近似的に表すことができる。 P(x) =P1- T。 号) T(x) =To-Bx 上式が常に成りたつものとして次の問いに答えよ。 (7) 高さ*での大気の密度をT。 Po m Ra のるキ ン の ロ」

回答募集中 回答数: 0
物理 高校生

回答の5行目から先が何しているのかさっぱりわかりません。 V₁=V₂=C₃/(C₁₂+C₃)×V これの最後の項は何を表しているんですか?上の比と式の関連性も分かりません。

コンデンサー(キャパシタともいう)には, 電気を蓄える。 解答 C, と C. の合成容量を Ca[uF]とすると, 並列接続より、 直流電流を 195 199 例題41 コンデンサーの並列·直列 右図の回路で,C, Ca, Caは電気容量がそれ ぞれC=2.0[uF], C;=4.0[uF], C;=9.0[uF]の コンデンサー,Vは電圧が1V=50[V]の電池であ る。スイッチを閉じたとき, Ci, Ca, Cs にかか る電圧V[V], 14[V], 14[V]をそれぞれ求めよ。 ただし,初め各コンデンサーには電荷がなかった ものとする。 理 V センサー 64 V=V%で電圧が等しいので, Cip=C;+ C=D6.0[uF] Cz と Caは直列接続であり,電気量Qが等しいので, 直列地 Q=CV より, *直列接続:Qが等しい ので,CとVは反比例 する。 *並列接続:Vが等しい ので,QとCは比例する。 続の合成容量の式が使える。 Q= CV より、CとVは反比例するので, Vi:Vs= C。: C, よって, i=V:=- Cs 9.0 -×50= 30[V] V= 三 Ciz+ Cs 6.0+9.0 V%=V-V= 20[V] 例題42 初めに電荷を蓄えているコンデンサーを含む接続» 197 205 208 右図で、C. C:は電気容量がともにC[F]のコンデ ンサー, Vは電圧 V[V]の電池である。初め, Ciには +2CV」-2CV %3 C C。 右図の上らに2CVI の雷気景が萎えられていた。

回答募集中 回答数: 0
物理 高校生

106(オ)がわからないです

(2)図の最初の状態にもどる。すなわち,各スイッチは開いており、 (4)各コンデンサーの耐電圧(耐えられる電圧の限界)がすべて 45Vであるとき,合成コンデ C, Dの電位はそれぞれ Va=V(V), Va=Dオコ×V[V). [V/m]である。導体板 A, B, C, D間に蓄積されている静電エ 図1のように、十分に広い面積Sをもった平行板コンデンサーにおいて, 左側の極板Aは この状態でスイッチ S.のみを閉じた。このとき, 専体板A, B, どの導体板にも電荷は蓄えられていない。次の2つの操作後の結果を比較しよう。 d(m)、2d (m), 3d[m) とする。ここで, dは導体板の辺の長さ aと比較して十分小さいと する。国中のS,Sa. Siはスイッチを表している。 電源Vは電圧「V[V) の直流電源であり。 操作a):スイッチ S」を閉じ,しばらくしてスイッチ S,を開く。 それからスイッチS.を る文章を解答群から選べ。ただし、 数式は C, V、 dのうち必要なものを用いて答えよ。 2つの導体板 A, Bを平行板コンデンサーとみなしたときの電気容量を CIF) とする。 導体板Dは電源の負極とともに接地されている(接地点の電位を基準V とする。 また。 84 コンデンサー 85 標準間■ A つり最初の状態ではどの事体数にも電荷は書えられていたい。 °104.(コンデンサーの合成容量) 6.0Vの直流電源Eと,電気容量がそれぞれ 3.0μF, 1.5μF, 2,0μF, 2.0μFの4つのコンデンサー Ci, Ca, Cs, C4を図のように 接続し、十分に時間を経過させた。各コンデンサーは,接続する前 は電荷をもっていなかったものとして,次の問いに答えよ。 (1) 4つのコンデンサーの合成容量 C [uF] を求めよ。 (2)各コンデンサーに加わる電圧 Vi. Vz, Vs, Va [V), および蓄えら れた電気量Q,Q, Q, Q [C] を求めよ。 (3) 各コンデンサーに蓄えられた静電エネルギーの合計び [J] を求めよ。 C C。 S」 し ×V (VJ, Vo=UV である。導体板BとCの向かい合 C。 れらの間の空間に発生する電場は図で右向き, その強きは AB C E ネルギーの合計はオ|×CV2[J] である。 通体所の間属は拡大して かいてある ンサーとしての耐電圧 Vimax (V] を求めよ。 105.(ばね付きコンデンサー) (10 群馬大) 閉じる。 固定されているが、右側の極板Bは壁に固定されているばね (ばね定数k)につながカて。 て、Aに平行なまま動くことができる。極板が帯電していないとき, ばねは自然の長さのい 態にあり,極板間の距離はdであった。次に,図2のように,極板Aに正, 極板Bに自の筆 荷を徐々に帯電させるとばねは徐々に伸び,最終的に極板Aに +Q, 極板Bに -Qの雷益た 帯電させたところ, ばねの伸びが 4d (Ad <d), 極板問距離がd-ddとなったところでつり あった。真空の誘電率を Eo, 空気の比誘電率を1とする。また, ばねおよび壁の帯電, 重力 の影響はないものとする。次の問いに答えよ。ただし, (2)~~(5)は, Eo, d, k, Q, Sの中から 必要なものを用いて解答せよ。 (1) 電気力線のようすを図3に矢印で表せ。 極板間の電場の強さEを求めよ。 極板Bにはたらく電気的な力Fを求めよ。 (4) dd を求めよ。 (5) 極板間の電位差Vを求めよ。 ここで、極板Bを固定し、極板Aに +Q. 極板Bに -Qの電荷 を帯電させたまま、極板間に、比誘電率2の誘電体を図4のよう にゆっくりと差しこんだ。 6 このときの電気力線のようすを図4に矢印で表せ。 (7) Bにはたらく電気的な力は,(3)と比べてどうなるか。 を開く。 初めに操作(a)による結果を考察する。操作終了後,導体板CとDの間の電場の強さは 一カ(V/m] であり,導体板Aの電位は Via=Lキ ×V(V) である。このとき、毒体 新間全体に蓄積された静電エネルギーは,(1)のエネルギーの値オ×CV?[J) の ク]番 である。 一方,操作(b)の場合, 操作終了後に導体板AとBの同に発生する電場の強さはケ (V/m] であり, 導体板Aに蓄えられた電気量は Q=D■コ C) である。 また、事体板 A Bの電位はそれぞれ VAb= サ×1/[V), Vias=■シ×1/(V) となる。この場合、毒 体板間全体に蓄積された静電エネルギーは, (1)のエネルギーの値閉×CV*(J]の ス] 倍である。 したがって、2つの操作後の結果を比較すると次のようなことがわかる。 スイッチS。 を閉じると導体板 B, C間に発生していた電場が消失するので, スイッチを開じた直後。 その分の静電エネルギーが減少する。このとき、 セ」ということがいえる。 (2)の(b)の操作後,しばらくしてスイッチS:を開き、それからスイッチS,を開じた。この とき,導体板Cの電位は V%=[ ソ×1/[V] で, 導体板BとDに蓄えられている電気量 (絶対値)はそれぞれタ×0,[C). 「 チ]×Q&(C) となる。ここで、 &はこのコ(C である。 |セの解答群 3- d-dd- B A B otinl Foom P00000 +Q-91 図1 図2 -Q +Q 図3 +Q *106.(4枚の導体板によるコンデンサー回路) (15 広島市大 改) 図4 (a), (b)で等しくなる 間の静電エネルギーに加算される (14 東京理大改) s」a 51

回答募集中 回答数: 0