学年

教科

質問の種類

物理 高校生

星マークの部分の解説がなく分かりません。 答えは近くに書いてあります。お願いします

バ ム (1) 水平面に達したときの物体の運動エネルギーは何Jか。 図のように、 なめらかな曲面と水平面がつながっている。 水平面から 高さ0.20mの曲面上に、 質量 0.50kgの物体を置き、静かに手をはな す。 物体は水平面上に達し、 一端が固定されたばね定数49N/mのばね を押し縮めた。 重力加速度の大きさを9.8m/s2 とする。 曲面上での運動とばねについて、以下の各問いに答えよ。 【思考・判断・ 表現 】 0.20m xF=kx² 2ばねの縮みの最大値は何mか。 Imv- 0.5 A.0.20m 0:20x ×0.5 9.8 4.9 (3) ばねの縮みがx 〔m〕 のとき、 物体の弾性力による位置エネルギー [J] との関係を表す グラフを、以下の選択肢から最も適当なものを選べ。 04970 0 09 ア U(J) 0 x (m) イ U(J)↑ 0 x(m) [J]↑ 098. 98710 0 0.98 x (m〕 10 力学的エネルギーの変化について、以下の各問いに答えよ。 【知識】 図のように、質量mの物体を、 水平面から高さんのなめらかな斜面上から、静かにすべらす。 物体は、長さLの粗い水平面を通り過ぎ、同じ傾斜をもつなめらかな斜面上を、高さまで上がった。 重力加速度の大きさをgとする。 2 (1) 動摩擦力が物体にする仕事を求めよ。 mgh (2) 時間が経過すると、 物体は粗い水平面を往復し、いずれ静止する。 物体が静止する位置の、 粗い水平面上の左端からの距離を求めよ。 (3)右側の斜面だけ、 傾斜を大きくしたとき、 物体が静止する位置は、(2)と比べてどうなるか。 以下の選択肢から最も適当なものを選べ。 ア. やや左側 イ, 同じ位置 右側 物 77410 m <問題は以上です。>

回答募集中 回答数: 0
物理 高校生

物理のエネルギー保存則の問題です。 この問題の(2)は等加速度直線運動の公式を使って解くことは出来ないのでしょうか?? 等加速度直線運動の公式は摩擦があると使えないということなのですか…?? 教えていただきたいです!!

34 力学 [11] エネルギー保存則 質量mの小球Pと3mの小物 体Q を糸で結び、Qを傾角30°の 斜面上の点Aに置き、糸を斜面 と平行にし、滑車にかけてPを つるす。 斜面は点Aの上側では 滑らかであるが、下側は粗く、 Qとの間の動摩擦係数は 1/3で P m Vo +1 Vo 3m → C 30° ある。Pに鉛直下向きの初速vo を与えたところ, Qもひで点Aから動 き出した。 重力加速度をgとし エネルギー保存則を用いて答えよ。 ((1) Q の達する最高点Bと点Aとの距離はいくらか。 (2) はやがて下へ滑り点Cで止まった。 AC間の距離Lはいくらか。 Level (1) ★ (2) Point & Hint Pの重力 mg よりもQの重力 の斜面方向の分力 3mg sin 30° の方が大きいので、静かに放せ →ばQ が下がりPが上がる状況。 運動方程式でも解けるが、エ ネルギー保存則で解かなければ ならないし、そのほうが早く解 ける。 !!! (1) 摩擦がないので力学的エネ Base 力学的エネルギー保存則 12m+位置エネルギー=一定 ※位置エネルギーには、重力の位置エ ネルギー mgh やばねの弾性エネ ルギー -hx2 などがある。 摩擦がないとき成り立つ。 厳密には 非保存力の仕事が0のとき成り立つ。 ルギー保存則が成り立つがPとQが糸を通して力を及ぼし合い、エネルギーの やり取りをしているので, PやQ単独では成立しない。 全体(物体系)について扱 うこと。運動エネルギーと位置エネルギーの総量が保存されるが、失われたエネ ルギー=現れたエネルギーとすると式を立てやすい。 (2) 元の位置に戻ったときの速さをまず押さえたい。 その後は摩擦があるので、摩 擦熱を取り入れ、エネルギー保存則を立てる。 摩擦熱=動摩擦力×滑った距離

未解決 回答数: 1
物理 高校生

この全ての問題の途中式を教えて欲しいです🥺

20 S 確認してみよう A (1)x軸上を等加速度直線運動する物体について、 次の問いに答えよ。 (a) 加速度が正の向きに 1.5m/s? とする。 正の向きに 2.0m/sの速さ で原点を通過してから 4.0 秒後の速度はどの向きに何m/sか。 (b) 加速度が負の向きに 3.0m/s とする。 正の向きに 8.0m/sの速さ で原点を通過してから2.0秒間運動した。 この間の変位はどの向 きに何か。 (c)正の向きに 10.0m/sの速さで原点を通過してから8.0m進んだと き正の向きに 6.0m/sの速さであった。 この運動の加速度はど の向きに何m/s2 か。 (2)x軸上を等加速度直線運動する物体について, 次の問いに答えよ。 (a) 静止していた物体が正の向きに 5.0m/s2の加速度で動き始めた。 速度が正の向きに 16m/s となるまでの時間は何秒か。 (b) 加速度が負の向きに 1.2m/s2 のとき, 原点を通過してから5.0 秒 後の速度が負の向きに 2.0m/s となった。 初速度はどの向きに何 m/s か。 ヒント 表現に注意! 「静止していた物体が動き 始めた」 →初速度は 0 (3)x軸上を等加速度直線運動する物体について、 次の問いに答えよ。 (a)正の向きに10m/sの速さで原点を通過してから, 4.0秒間で60m 進んだ。 この運動の加速度はどの向きに何m/s2 か。 (b) 正の向きに 20m/sの速さで原点を通過してから5.0 秒後にもとの 位置にもどった。 この運動の加速度はどの向きに何m/s2 か。 (4)x軸上を等加速度直線運動する物体について, 次の問いに答えよ。 (a)正の向きに 4.0m/sの速さで原点を通過してから16m進んだ所で 停止した。 この運動の加速度はどの向きに何m/s2 か。 (b)正の向きに 5.0m/sの速さで原点を通過した物体が, 負の向きに 4.0m/s² の加速度で運動し、やがて速度は負の向きに 3.0m/s に なった。 この間の変位はどの向きに何mか。 ヒント 表現に注意! 「物体がもとの位置にも どった」 →物体の変位は 0 ヒント 表現に注意! 「物体が停止した」 →最終的な速度が0 (5)x軸上を運動する物体を考える。 正の向きに 6.0m/sの速さで原点を 通過した物体が,一定の加速度で運動し, 12m進んで停止した。 (a) このときの加速度はどの向きに何m/s2か。 (b)12m進むのにかかる時間は何秒か。

回答募集中 回答数: 0