学年

教科

質問の種類

物理 高校生

Ⅱの(4)をsin cos関数を使って解いたのですが答えが合いませんでした。どこが間違っているのかと正しい解法を教えて頂きたいです。お手数お掛けしますが宜しくお願い致します。

1/25 4/29 pooooooo 33 単振動 ばね定数のばねを鉛直に立て,上端に質量 M の板を取り付け、静止させる。そして,質量mの 小球をこの板の上方んの高さから静かに落下させ る。 重力加速度をg とする。 I. 物体が板と弾性衝突をする場合について (1) 衝突により小球がはね上がるためには,m とMの間にどのような関係が必要か。 33 単振動 99 mmmmm M (2) 衝突後,板ははじめの位置より最大どれだけ下がるか。衝突は 1度だけとする。 II. 小球が粘土のようなもので,衝突後, 板と一体となって運動する 場合について, (3)衝突の際,失われる力学的エネルギーはどれだけか。 (4) 板ははじめの位置より最大どれだけ下がるか。 (東工大) Level (1) (2),(3)★ (4) ★★ Point & Hint TS (1) (3) とくに断りがなければ, 衝突は瞬間的なものと考える。 その場合、重力の 力積は無視でき, 衝突の直前, 直後に対して運動量保存則を用いてよい。 弾性衝 突では全運動エネルギーが保存されるが, 反発係数 (はね返り係数) e=1 として 扱ったほうが計算しやすい。 (2), (4) ばね振り子のエネルギー保存則には,次の2通りの方法がある。 A: 1/12mu2+1/21kx2=定 (xは振動中心からの距離) 単振動の位置エネルギー B: 1/12mo+mgh+1/21kx定(xは自然長からの距離) 弾性エネルギー 12/23kx2 のもつ意味の違いと、xの測り方の違いを押さえておくこと。多くの場 合, A方式の方が計算しやすいが,(4)では注意が必要。

回答募集中 回答数: 0
物理 高校生

Ⅳの(3)でd/3までの釣り合いが安定でそれより大きくなると不安定になる理由がわからないです。教えて頂きたいです。よろしくお願いします。

図 2-3 (a) のように, 前間と同じ平行板コンデンサーの極板P を自然長 ばね定数の絶縁体の軽い ばねに接続し ばねの他端を壁に固定した. また, 極板 P2 を壁から距離 l+dの位置に固定した (極板の厚さ は無視できる)、 極板 P1 P2 には, それぞれ電荷 +Q (Q > 0), -Qが蓄えられている。 また, 壁とばねの静 電誘導による電荷は無視できるものとする。 質量mの極板P は極板P と平行な位置関係を保って左右にな めらかに動くことができるものとする。 極板P1 に力を加えて壁から距離の位置に保持した。 極板P1 と極板 P2の間の電場の大きさをE。 とする. 図2-3 (b) のように極板P」を壁から距離(+ェの位置にゆっくりと移動した。 極板 P, にばねからはたら く力と極板間の静電気力がつりあうときの位置を Q, Fo, k, m, co のうち必要な記号を用いて表せ、ただ し, 0<x<d とする. ⅣV 次に, P1 を図2-3(a) の位置に戻し、 図2-4 (a)のようにスイッチと電圧Vo(> 0)の直流電源に接続し た。その後、スイッチを閉じ, 極板 P, に力を加えて図2-4(b) のように壁から距離+æの位置にゆっくり と移動した(ただし<z<dとする)。その後,極板 P, を移動するために加えていた力をなくした。導線が -Kx Pl + Q 0000000000 d (a) 10000000 極板P が及ぼす力は考えない (1) 極板 P1 が壁から距離1+の位置にあるときに極板P, にはたらく力F (x) を Vo, S, d, z, k, m, Eo のうち必要な記号を用いて表せ。 ただし, 極板 P1 から P2 に向かう向きを正とする. (2) 極板 P1 にはたらくばねからの力と極板間の静電気力がつりあう位置が存在するためには, Vo はある上 限値Vm より小さくなければならない。このVm を S, d, k, m, so のうち必要な記号を用いて表せ. (3) Vo Vmの場合に存在するつりあいの安定性について説明せよ。 ただし, 「a <æ <bの範囲に存在す るつりあいは安定(または不安定)」 という形式で,存在するすべてのつりあいについて言及せよ. Foyd FEQ P₁ P2 +Q 0000000000 HI l+x (b) ・ 114471 9 図2-3 P₁ P₂ 0000000000 V₁ (a) 図2-4 l+x d-x GV (b) 萬 Fol F:EG

解決済み 回答数: 1
物理 高校生

物理の力学の問題です。 注のcの意味がわかりません。 わかる方教えて欲しいです🙇‍♀️

咲いているので,斜画力向には弾性力のはかに重力の成分もはたらく。 (1) ばね定数k2のばねの伸びがαのとき, k のばねの伸びをとする。おもり の大きさを無視して考えると,図より (lo+a)+(lo+b)=L よって b=L-2l-a k₁ k2 mmmm mmmm fi f2 このとき, k, k2 のばねの弾性力の大 きさをそれぞれ1, 2 とすると, フッ クの法則 (lo+b) (lo+a) 外カ =k1b=ki (L-2l-a), fz=kza おもりにはたらく力のつりあいから f1=f2 f2' 200 A (lo+b+x) (lo+a-x)+ ゆえに a=- よってki(L-lo-akza k₁ k₁+k₂ ・① ※A -(L-210) 次に,おもりを右向きにxだけ動かしたとするB (右向きを正の向きと する)。このとき, k, k2 のばねの伸びはそれぞれ k1 : 6+x=L-2l-a+x, k2: a-x よって, ばねの弾性力の大きさをそれぞれ f. ' とすると fi'=k (b+x)=k (L-2l-a+x) fz'=kz(a-x) おもりにはたらく2つの弾性力f', f' の合力Fは, ①式を用いて整理すると F=fz-fi'=kz(a-x) -k (L-2l-α+x) =-(k+k2)x+kza-k(L-2L-α)=-(ki+k2) xC ←A別解 全体の伸び L-2l をばね定数k, k2 の 逆比に分配すれば k₁ a= -(L-21) k₁+k₂ ←B おもりを移動させる のに外力が必要である。 Cx>0 (右へ移動)の とき F<0 (左向き), x<0 (左へ移動) のとき F>0(右 向き)のように,変位 xの向 きと弾性力の合力Fの向きは, 常に反対向きとなる。 また, 外力と力Fはつりあいの関 係にあるから f=(ki+kz)x なお, kk2 はばね 1,2を 並列 (直列ではない)につない だときの合成ばね定数である。

解決済み 回答数: 1