学年

教科

質問の種類

数学 高校生

高校数学AFOCUSGoldの328ページの問題です 100円硬貨が4枚, 50円硬貨が3枚、10円硬貨が2枚 5円硬貨が2枚。 1円硬貨が2枚あるとき、次の問いに答えよ。ただし、「支払い」とは、使わない硬貨があってもよいものとし、金額が1円以上の場合とする。 (1) 1... 続きを読む

4 100 円硬貨が4枚, 50円硬貨が3枚10円硬貨が2枚、5円硬貨が2枚, 1円硬貨が2枚あ るとき,次の問いに答えよ.ただし, 「支払い」とは、使わない硬貨があってもよいものと し、金額が1円以上の場合とする. (1) 15, 10円硬貨を使って支払える金額は何通りあるか. (2) 支払える金額は何通りあるか. <考え方> (1) 「10円硬貨1枚」と「5円硬貨2枚」は同じ金額「10円」を表すことに着目して、 全部で 「5円硬貨6枚 1円硬貨2枚」として考える. (21)と同様に,「50円硬貨 11枚5円硬貨6枚, 1円硬貨2枚」として考える. NOAA T (1) 「10円硬貨1枚」と「5円硬貨2枚」のとき, 同じ金額 「10円」を表すので、 「10円硬貨2枚」を「5円硬貨4 枚」と考える. 5円硬貨6枚の使い方は、 0~6枚の7通り 1円硬貨2枚の使い方は、 0~2枚の3通り より。 7×3=21 (通り) よって, 「支払い」は1円以上より, 求める総数は, 21-1=20 (通り) (2) (1)と同様に, 「100円硬貨4枚」 を 「50円硬貨8枚」と 考えると,あわせて11枚の50円硬貨の使い方は, 0~11 枚の 12通り よって, 12×7×3-1=251(通り) もとの5円硬貨2枚と10円 硬貨を5円硬貨とした4枚の 計6枚 「0円」の場合を引く、 5円、10円硬貨をすべ 1円 て使っても50円にならない、 | 「0円」の場合を引く、

回答募集中 回答数: 0
数学 高校生

FocusGoldSmart数2の問題です。 大問23の解き方がわかりません。 別解の方の解き方が乗っていない為わからないので誰か教えていただけませんか❔ 明日までに教えていただけると助かります❕

る. をそ して Focus a+b+c=1.abe=be+ca+ab とも1つは1に等しくなることを証明せよ。 考え方] 「 のうち少なくとも1つは1に等しい」とは、 a=1 または b=1 または e=1」 のことである。 実数α, βについて αβ=0 のとき、 α=0 または 8=0 であることを利用する。 a,b,cのうち、少なくとも1つは1に等しくなるとは, a=1 または b=1 または e=1 のことである. のとき, 実数a,b,cのうち少なく したがって (a-1)(b-1)(c-1)=0 ......① であることを示せばよい. ①の左辺を変形すると. (a-1)(b-1)(c-1) =(ab-a-b+1)(c-1) =abc-ab-ac+a-bc+b+c - 1 =abe-(bc+ca+ab)+(a+b+c)-1 =abc-abc+1-1=0 条件を利用して ① が成 り立つことを示す。 したがって, a+b+c=1.abc=bc+ca+ab のとき abc=bc+catah 等式 ① は成り立つから. ①より |a+b+c=1 α-1=0 または 6-1=0 またはc-1=0 よって, a=1 または b=1 またはc=1 となり. a b c のうち少なくとも1つは1に等しくなる. (別解) 実数 a b c が与えられた条件を満たすとき 実数 a b c を解とする3次方程式は. abc=bc+ca+ ab=k (k は実数) とおくと. x-x+kx-k=0 と表せる. これを変形すると, x(x-1)+k(x-1)=0 (x-1)(x²+k) = 0 よって, x=1 を解にもつので、 a.b.cのうち 少なくとも1つは1に等しくなる. 実数α. β.yについて aβy=0 ⇔α = 0 または 80 または y=0 3次方程式 ax2+bx+cx+d=0 の3つの解をα. B. yと すると. a+β+y=- b a a+by+ya=/c aβy=- d a (p.120 解説参照) 「少なくとも1つは☆に等しい」 は 「積) =0」 を示せ 注〉 (a-b)(b-c) (c-α)=0 となるとき, a b または b c またはca」 であるか ら、「a b c のうち少なくとも2つは等しくなる」 となる。

回答募集中 回答数: 0
1/69