学年

教科

質問の種類

数学 高校生

85. ①記述問題で「〜でも一般性を失わない」という記述を見たことがないのですが、記述においてよく書くものですか?? ② 4,5行目の「x軸に、...y軸にとり」は「x軸上に、...y軸上にとり」と同じことですよね?? ③ ②のところで直線BCと辺BCとなっているのはなぜで... 続きを読む

●合は起こりえない こともできる。 が平行 ない。 3の場合は、 ①,2の場合 3 3 直線が1点で 直線の交点を 通る x+b₁y+c=l -+C2=0が平 -ab=0 (ii) ←2xy+1= txty-7=/ ような 基本 例題 85 座標を利用した証明 (2) △ABC の各辺の垂直二等分線は1点で交わることを証明せよ。 1 指針 p. 117 基本例題72と同じように、計算がらくになる工夫をする。 座標の工夫 ①1 座標に0を多く含む 2② 対称に点をとる この例題では,各辺の垂直二等分線の方程式を利用するから、各辺の中点の座標に分数が 現れないように, A(2a,26), B(-2c, 0), C(2c, 0) と設定する。 なお,本間は三角形の外心の存在の座標を利用した証明にあたる。 解答 ∠Aを最大角としても一般性を失わな い。 このとき, ∠B <90° ∠ C <90° である。 SMO SAO MA 直線BC をx軸に、辺BCの垂直二等 分線を軸にとり, △ABCの頂点の 座標を次のようにおく。 A(2a, 2b), B(-2c, 0), C(2c, 0) b B -2c a²+6²-c² b N A(2a, 2b) K OL ただし a≧0,6> 0,c>0 また, ∠B<90°C <90° から, a≠c, aキーcである。 更に、辺BC, CA, ABの中点をそれぞれL, M, N とする と, 0), M (a+c, b), N (a-c, b) と表される。 L(0, 辺ABの垂直二等分線の傾きをm とすると, 直線AB の傾き b 06 であるから,mo a+c は a+c=1&y a+c b よって, 辺ABの垂直二等分線の方程式は y-b=-atc -(x-a+c) m=- M C 2cx すなわち y=- -x+ a+c b 辺ACの垂直二等分線の方程式は,①でcの代わりに -c と おいて a-c a²+6²-c² y=-- -x+ b b 2直線①,②の交点をKとすると, ① ② のy切片はともに a²+6²-c² a²+6²-c² であるから Kl0, +80-C²) b b 点K は, y 軸すなわち辺BCの垂直二等分線上にあるから, △ABCの各辺の垂直二等分線は1点で交わる。 基本72 注意 間違った座標設定 例えば, A(0, b), B(c, 0), C (-c, 0) では, △ABCは 二等辺三角形で、特別な三角 形しか表さない。 座標を設定するときは, 一般 性を失わないようにしなけ ればならない。 証明に直線の方程式を使用 するから 分母=0 となら ないように,この条件を記 している。 0-26 -2c-2a b atc 点N(a-c, b) を通り,傾 き−atc b の直線。 辺ACの垂直二等分線は, b a-c 傾き の直線ACに 垂直で,点 M (a+c, b) を 通るから、①でcの代わ りに -c とおくと, その方 程式が得られる。 練習 △ABCの3つの頂点から,それぞれの対辺またはその延長に下ろした垂線は1 ②85点で交わることを証明せよ (この3つの垂線が交わる点を三角形の垂心 とい (p.134 EX58 » う)。 133 3章 13 直線の方程式、2直線の関係

未解決 回答数: 1
数学 高校生

青チャ数3の問題です。解答は理解できるのですが、この解法を自分で思いつけるとは全く思いません。これは、解法暗記する問題ですか?どうやったらこんな解法を自分で思いつきますか?

413 1 1 1 2 3 <logn+1 n log(n+1)<1+ 一12 dx 基本 245,248 (演習 254 )o V1-x3 な 6 1 1 は簡単な式で表されない。 そこで, 積分の助けを借りる。 数列の和1+-+ 2)(演習250 の下側の面積と階段状の図形の面積を比較 して, 不等式を すなわち,曲線yー 用してみる。 証明する。 なに対して, Rニxミk+1のとき 1 y 7章 一微分し, 増減を ト<図 1 36 式の 20S e+1-x 1 1 ではない k 1 またはー 1 *_IH ck+1 dx (キ+1 dx x (*+1 dx Ck+1 dx 1 k 0| 123…ntx n-1 n+1 (1-x)>0 から Jみ+1 1 x 1 y=ー k+1 -k+1 dx 1 こ増加する。 く x x 0 k k+1 &+1 1 y= x 図<ト 二単調に減少す よって 口 のから k+1? 式の 1 く の ck+1 dx (AでR=1,2,……, nと して辺々を加える。 x (n+1 dx 1n+1 0|123…↑ n *n+1 4pt! de B n-1 るから -sin°0 x 同 *れ+1 =log(n+1) log(n+1)<1+ 2 s0 であるから 3 n rh+1 dx n-1 1 n-1ck+1 ©から A©でk=1, 2, …, n-1 として辺々を加える。 HI k=1k+1 x k=1Jk x 『-- ogx|-lognであるから ++ : dx 1 <logn -a 2 3 n この不等式の両辺に1を加えて 1+ 2 1 1 <logn+1 n <1 3 よって,0, ② から, n>2のとき 1 1 log(n+1)<1+ 2 3 <logn+1 n TAS 次の不等式を証明せよ。ただし, nは自然数とする。1t 291 (p0 :0).0 20S 4ール 1) (2) お茶の水大) 1 22 不の0 () 1 く2- (n22) 3° n? n 208 0 5OS 1 V2 2./m-1 V3 Cp.414 EX207 ya P 定積分と和の極限、不等式

解決済み 回答数: 2
1/2