学年

教科

質問の種類

数学 高校生

なぜ二つの室の圧力が同じなのでしょうか! よろしくお願いします。

9月21日 8限目 演習問題 |1 2015 九大 図のように、 断熱材でできた密閉さ れた容器が隔壁により第1室と第2室 に仕切られている。 隔壁は各室の気密 性を保ちながら容器内を摩擦なくなめ らかに動く。 また, 隔壁を固定するこ とも可能である。 隔壁の中央部は熱を 通す素材で、それ以外の部分は断熱材 でできている。さらに, 中央部は開閉 可能な断熱カバーでおおわれており, このカバーの開閉により両室間の熱の移動を制御できる。すなわち, 断熱カバーが閉じてい いれば、両室の間に熱の移動は無く, 断熱カバーが開いていれば,両室の間でゆるやかなB. 熱の移動が可能である。 隔壁中央部の熱容量はないものとする。 第1室内にはヒーターが 設置されており, 第1室の気体を加熱することができる。 容器 第1室 ヒーター 隔壁 断熱カバー 第2室 隔壁中央部 IPA (l). 3 第1室と第2室に,気体定数をRとして定積モル比熱が 22 R である同種の単原子分子 理想気体を封入し, 次に述べるような状態変化を行った。 なお, 問題中の温度はすべて絶 対温度で与えられている。 初めの状態 A では, 隔壁は静止しており, 断熱カバーは閉じている。 このとき, 第1 室の気体の体積, 温度,圧力はそれぞれVA, TA, PA であり, 第2室の気体の体積, 溫 度,圧力はそれぞれ 3VA, TA, PAであった。 (1) 第1室の気体の物質量(モルを単位として表した物質の量) , VA, T'A' PA, R の 中から必要なものを用いて表せ。 状態 A から, 隔壁を固定し断熱カバーを閉じたままヒーターによりゆっくり第1室の 気体を加熱したところ, 第1室の気体の温度が2TA となった。 この状態を状態 B とする。 (2) 状態 A から状態 B への変化の間にヒーターが第1室の気体に加えた熱量を, VA, TA,PA, R の中から必要なものを用いて表せ。 次に, 状態 B から隔壁を固定したまま断熱カバーを開け, しばらく待ったところ, 熱 平衡に達した。 この状態を状態Cとする。 (3) 状態Cにおける第1室, 第2室の気体の温度を, VA, TA, PARの中から必要な ものを用いて表せ。 (4) 状態 B から状態 C への変化の間に第1室から第2室に移動した熱量を, VA, TA, PA, R の中から必要なものを用いて表せ。 (5) 状態Cにおける第1室の気体の圧力, 第2室の気体の圧力を、 それぞれVA, TA, PA, R の中から必要なものを用いて表せ。 再び状態 A から考える。 以後, 隔壁は自由に動けるとし, 断熱カバーは閉じている。 ヒーターによりゆっくり第1室の気体を加熱し、 総量 3PAVA の熱を加えた状態を状態 Dとする。 (6) 状態 A から状態 D への変化の間に生じた第1室, 第2室の気体の内部エネルギーの 変化をそれぞれ 4U 1, 4U2 とする。 AU1+4U2 を, VA, PA を用いて表せ。 (7) 状態 D における第1室の気体の体積をVD とし, 状態 D における第1室, 第2室の 気体の圧力をpp とする。 4U を, VA, PA, VD, PD を用いて表せ。 (8) PD を, VA, TA, PA, Rの中から必要なものを用いて表せ。 なぜ? ださい

未解決 回答数: 1
数学 高校生

89.2 2の解答の図での赤の直線と黒の直線はそれぞれ何を表しているのですか?

442 の 基本例題89 方べきの定理とその逆を利用した証明問題 ①①000 (1) 鋭角三角形ABC の各頂点から対辺に, それぞれ垂線 AD, BE, CF を引き それらの交点(垂心)をHとするとき, AH HD=BH・HE=CH ・HF が成り立 類 広島修道大 つことを証明せよ。 (2) 2点 Q R で交わる2円がある。 直線 QR 上の点Pを通る2円の弦をそれぞ れ AB, CD (または割線を PAB, PCD) とするとき, A, B, C, D1つ 周上にあることを証明せよ。 ただし, A, B, C, D は一直線上にないとする。 440 基本事項 ① ②2 重要90 指針(1) 直角2つで円くなる により, 4点B,C,E,F は1つの円周上にある。 ゆえに, 弦 BE と弦 CF で 方べきの定理 が利用できて BH ・HE=CH・HF 同様にして, AH・HD=BH・HE または AH・HD=CH・HF を示す。 (2) PA・PB=PC・PD ・・・・・・ (*) であることが示されれば, 方べきの定理の逆により、 題意は証明できる。 ! よって, (*)を導くために, 弦AB と弦 QR, 弦 CD と弦 QR で方べきの定理を使う。 ゆるめ 【CHART 接線と割線, 交わる2弦・2割線で方べきの定理 Senpo. 解答 (1) ∠BEC=∠BFC = 90° であるから, 4点B, C, E, F は1つの円周上に ある。 よって, 方べきの定理により BH ・HE = CH・HF (3) 1 TE 同様に, 4点A, B, D, E は 1つの AFB 円周上にあるから AH ・HD=BH ・HE ① ② から (2) 2円について AH ・HD=BH・HE=CH・HF 89 PA・PB=PQ・PR, PC・PD=PQ・PR PA・PB=PC・PD ゆえに よって, A, B, C, D は 1つの円周 上にある。 B A A F C E B C D PBS)5453 14-10-89-12 方べきの定理 直角2つで円くなる D 弦BEと弦CF に注目。 <∠ADB=∠AEB=90° 弦 AD と弦BE に注目。 方べきの定理の逆 (1) 円に内接する四角形 ABCD の対角線の交点EからAD に平行線を引き, 直 線BCとの交点をFとする。 このとき, F から四角形ABCD の外接円に引 た接線FGの長さは線分FFの長さに 7 ( に し

回答募集中 回答数: 0
数学 高校生

77.2 「(1)と同様に」というのは三角形ABCの全ての辺が2:1の比で分けられているから、ということでBQ:QP:PM=3:3:1と考えられるということですよね?実際に計算する訳じゃないですよね?

422 300000 メネラウスの定理と三角形の面積 基本例題 77 面積が1に等しい△ABCにおいて, 辺BC, CA, AB を 2:1に内分する点をそ れぞれL, M, N とし,線分 ALとBM, BM と CN, CN と AL の交点をそれぞ [類 創価大 れ P, Q, R とするとき (1) APPR: RL=7: (2) APQR の面積は 指針 (1) △ABLとCN にメネラウス→LR: RA △ACL と BM にメネラウス→LP: PA これらから比AP : PR: RL がわかる。 (2) BQ: QP PM も (1) と同様にして求められる。 △ABCの面積を利用して, △ABL → △PBR → △PQR と順に面積を求める。 すなわち よって また, 解答 (1) △ABLとCN について, メネラウス AN BC. LR の定理により NB CL RA ■ : 1 である。 ]である。 【CHART 三角形の面積比 等高なら底辺の比,等底なら高さの比 CUEN LR 2.3. RR=1 1 1 RA ゆえに =1 -=1 すなわち △ABL= LR:RA=1:6... ① ACLとBM について, メネラウスの定理により AM CB LP MC BL PA よって LP:PA=4:3...... ② ① ② から AP: PR: RL=3:13:1 (2) (1) と同様にして BQ: QP: PM=3:3:1 よって △PBR= AABL-12123AABC-0272300 △ABC= 3 7 △PQR= 1/1/12 △PBR= B △ABL= 2 7 P 13 LP 1P=1 2 2 PA 1 7 M 3 /R =1 C 右の図の三角形ABCにおいて, AE: EB=1:α, 練習 ③77 BD:DC=16とする。 ただし、α> 0, b>0 である。 (1) AP: PD をa, bを用いて表せ。 (2) APE: △ABCをa, bを用いて表せ。 [宮崎大] p.429 EX51 LR 1 RA 6 LP PA 3 N Q B -2- TKC 定理を用いる三角形と線分 を明示する。 1+m から B 2 AP: PR: RL =l:minとすると n 1 m+n_ 6' l=m=3n 基本76 A EXP D 指 (1 (2) 練 3

未解決 回答数: 1
数学 高校生

2番の問題ですがなぜOHベクトルがマーカーのようになるのでしょうか? 因みに私はOHベクトル=cosΘにしました。

12 で表 がある. 円C上 利用して,円Cの ことを利用する。 とよい. を4で割る. "=r の形に変形 P(p) B (6) E√5 考え方 解 円の接線 線分の垂直二等分線のベクトル方程式 ** (1) 中心C(c), 半径の円C上の点P() におけるの トル方程式は (-)=²(x>0) であることを示せ。 (2) OA=4,OB=6,4|=||=1,4=kのとき,線分 OA の垂直 二等分線のベクトル方程式を媒介変数tとa, , kを用いて表せ。 ただし, 点Bは直線OA 上にないものとする。 (1) ℃の接線は、 接点Pを通る半径 CP に垂直である.このことを, ベクトル の内積を用いて表す。 (2) B から OA への垂線を BH とする.線分 OA の中点 M (1/2d) を通り, BHに平 行な直線のベクトル方程式を求める. (1) 接線上の任意の点をP(D) とすると, CPPP または PP = 1 であるから, CP-P.P=0 CP=po-c, PPD-po より, Po(po) (Po-c) (p-po)=0 (Po-c) {(p-c)-po-c)}=0 (Po-c) (p-c)-po-c²=0 |po-cl=CP=r であるから, ( (②2) 垂直二等分線上の点Pについて, M (12) OP= とする.また, B から OA HX への垂線をBH とし, ∠AOB=0 とすると, |a|=1, ||=1 より, k=d6=1×1×cos0=cos0 A(a) P(p) C(c) -2)・(おご)=²円の半径 0 ←なぜこうなるの? P(p) B(b) OH = (cose)a=kd これより, BH = OH-OB=ka-b 垂直二等分線は,線分 OA の中点M (124)を通り, BFに平行な直線であるから、五=1/2a+t(hd-6) PP のとき. CPoPoP P=Po のとき, P.P=0 OH = OB cose =1・cos0=cose BH は、 垂直二等分線 の方向ベクトル 平面上のベクトル =(1,-3) 2つのベクトルのなす角 cos d=立 (2,1). (173) √5 +√10 0≦x≦180°より 2直線のなす角 0=45° 44 191355 (1) 14P-30-21= | 45²³² - (30²³+R) | = 30+1 ことな 点Cは線分AB あり、IP-2 点Pと点くの よって点は線 する点を

回答募集中 回答数: 0
数学 高校生

この問題について教えてもらいたいです。 後、2の集合のところで、なぜ、pはQの要素になるのかも教えてもらいたいです。

ない、 または写 Uであるか - 正しいもの 次の図の斜線 (b) マと (d) 数学 Ⅰ 〔2〕 S高校の全校生徒の人数は400人であり, S 高校には美術部がある。 美術部に 所属している生徒35人のうち15人が, 美術部に所属しながら写真部を設立した いと校長先生に申請書を提出し, 写真部の設立が認められた。 写真部に所属する 生徒はその15人のみである。 (1) S高校の全校生徒の集合を全体集合とし、このうち, 美術部に所属する生徒の 集合をP, 写真部に所属する生徒の集合をQとおく。 また, P, Qの補集合をそ れぞれP Q で表す。 このとき ク O PCQ 4 PCQ ケ ク の解答群 ケ ⑩ない ③ (c)だけである (1 PDQ 65 POQ の解答群 (解答の順序は問わない。) 記述 (a)~(d) のうち正しいものは が成り立つ。 つつ (2)S高校に通うすべての生徒についての記述 (a)~(d) がある。 S高校に通うすべての生徒は, 美術部に所属している, または写真部に所属 している。 X B PEQ 6 PEQ (b)S高校に通うすべての生徒は, 美術部に所属している, または写真部に所属 していない。 PA (c)S高校に通うすべての生徒は、美術部に所属していない, または写真部に所 属している。 (d) S高校に通うすべての生徒は, 美術部に所属していない, または写真部に所 属していない。 コ 。 ③3③ P⇒ Q P=Q ① (a)だけである ④ (d)だけである PUBX ② (b)だけである

回答募集中 回答数: 0