数学
高校生

77.2
「(1)と同様に」というのは三角形ABCの全ての辺が2:1の比で分けられているから、ということでBQ:QP:PM=3:3:1と考えられるということですよね?実際に計算する訳じゃないですよね?

422 300000 メネラウスの定理と三角形の面積 基本例題 77 面積が1に等しい△ABCにおいて, 辺BC, CA, AB を 2:1に内分する点をそ れぞれL, M, N とし,線分 ALとBM, BM と CN, CN と AL の交点をそれぞ [類 創価大 れ P, Q, R とするとき (1) APPR: RL=7: (2) APQR の面積は 指針 (1) △ABLとCN にメネラウス→LR: RA △ACL と BM にメネラウス→LP: PA これらから比AP : PR: RL がわかる。 (2) BQ: QP PM も (1) と同様にして求められる。 △ABCの面積を利用して, △ABL → △PBR → △PQR と順に面積を求める。 すなわち よって また, 解答 (1) △ABLとCN について, メネラウス AN BC. LR の定理により NB CL RA ■ : 1 である。 ]である。 【CHART 三角形の面積比 等高なら底辺の比,等底なら高さの比 CUEN LR 2.3. RR=1 1 1 RA ゆえに =1 -=1 すなわち △ABL= LR:RA=1:6... ① ACLとBM について, メネラウスの定理により AM CB LP MC BL PA よって LP:PA=4:3...... ② ① ② から AP: PR: RL=3:13:1 (2) (1) と同様にして BQ: QP: PM=3:3:1 よって △PBR= AABL-12123AABC-0272300 △ABC= 3 7 △PQR= 1/1/12 △PBR= B △ABL= 2 7 P 13 LP 1P=1 2 2 PA 1 7 M 3 /R =1 C 右の図の三角形ABCにおいて, AE: EB=1:α, 練習 ③77 BD:DC=16とする。 ただし、α> 0, b>0 である。 (1) AP: PD をa, bを用いて表せ。 (2) APE: △ABCをa, bを用いて表せ。 [宮崎大] p.429 EX51 LR 1 RA 6 LP PA 3 N Q B -2- TKC 定理を用いる三角形と線分 を明示する。 1+m から B 2 AP: PR: RL =l:minとすると n 1 m+n_ 6' l=m=3n 基本76 A EXP D 指 (1 (2) 練 3

回答

実際に計算して同じような結果になると理解しても、全ての辺が2:1の比で分けられていることから気付き理解しても、どちらでも大丈夫です。

この回答にコメントする
疑問は解決しましたか?