学年

教科

質問の種類

数学 高校生

数学Ⅱで質問です。 写真の問題の解答で、 [2]でm≠−1 をするのはどうしてか教えていただきたいです。お願いします。

26 第2章 複素数と方程式 CONNECT 5 方程式がただ1つの実数解をもつ条件 第 1 xの方程式 (m+1)x2+2(m-1)x+2m-5=0がただ1つの実数解をもつとき 定数の値を求めよ。 考え方 m+1=0 すなわち m =-1のとき, 与えられた方程式は1次方程式となり, だ1つの実数解をもつ。m=-1とmキー1で場合分けをする。 解答 (m+1)x2+2(m-1)x+2m-5=0 ...... ① とおく。 [1] m+1=0 すなわちm=1のとき 解と係数の関係 1 解と係数の関係 2次方程式 ax2+bx+c=0の2つの解をα,βと 2 2次式の因数分解 2次方程式 ax2+bx+c=0の2つの解をα,βと 3 2 数α,β解とする2次方程式 2数α, βを解とする2次方程式の1つは 方程式①は-4x-7=0となり, ただ1つの実数解 x=- -- 7 をもつ。 4 [2] m+1=0 すなわちmキー1のとき 方程式 ① は2次方程式となるから、①の判別式をDとすると D=(m-1)-(m+1)(2m-5)=-m²+m+6 =-(m+2)(m-3) ①がただ1つの実数解をもつのはD=0のときである。 -(m+2)(m-3)=0 よって これを解いて m=-2,3 これらはmキー1を満たす。 [1], [2] より, 求めるmの値は m=-2,-1,3 *04 の現 A 問 87 次の2次方程式について 2つの (1)x2+3x+2=0 *(3) 4x2+3x-9=0 *88 2次方程式 x²-2x+3=0の2 めよ。 (1)Q2+β2 (2) 303 (5)

未解決 回答数: 1
数学 高校生

この問題の(3)についての質問です。 f(x)とg(x)のグラフの上下判定をどうやってしているのかがわかりません。 また、どちらも3次式なのに、(3)では1/6公式を使っています。なぜ使えたのか、どうやって使えるものと使えないものを見分けるのか教えてください。 よろしくお願... 続きを読む

正の実数を実数とする。 f(x)=x-3x2 とし, 曲線 y=f(x) を C1, 曲線 y= fx-p+g を C とする。 C2 が点(1, 2) を通るとき, 以下の問に答えよ。 (1) gを用いて表せ。 (2) 2曲線C1, C, が異なる2点で交わることを示せ。 (3)2曲線C1, C, で囲まれた部分の面積をSとする。 S=8 となるとき のかの値を求めよ。 (1)C2は y=f(x-p)+q =(x-p)² - 3(x-p³ + q (3) fx-8(火)=3p(4-1)3xx-(p+0} で、P>0であるから、1<x<P+1のとき、 fw<g(x) fw-g(x) <0 つまり これが点(1-2)を通るとき であるから, -2 = (1-p)² - 3 (1-p)² + 2 よって、8=p-3P (日) (2) (1)より、C2は y=(x-p3-3(x-p5+p-sp ··· Y = x²= (³p + 3) x² + (3p²+ 6p) x − 3p²¬³p ここでg(x)=ペー(3p+3)+(346) X-3-3P とおくと、 fw-g(x) = 3px=(3+6P)x+3p+3P = 3p {ー(p+2)x+(+1} 3P(x-1){x(p+1)} より、f(x)=g()をみたすxは x=1, p+1 ここでP>0より P+1>1であるから、 2曲線CC2はx座標が1, 1.pt1の異なる2点 で交わる。 P+1 S = {gw-fox) | dhe = P+1 -3p) (x-1) 10-(p+1)} obc -3p (-1) + (PH-1) ³² p 2 よってS=8のとき =8 4 18 :pa16 Proより、p=2

解決済み 回答数: 2
数学 高校生

この解説の前半がよくわからないのでもっと詳しくわかりやすい解説を求めてます! 特にf(x+1)-f(x)   =a(x+1)ⁿ+b(x+1)ⁿ⁻¹+・・・-(axⁿ+bxⁿ⁻¹+・・・)  から   =anxⁿ⁻¹+g(x) となるところがよくわからないです

重要 例題 21 等式を満たす多項式の決定 00000 多項式f(x)はすべての実数xについてf(x+1)-f(x)=2x を満たし,f(0) = 1 であるという。このとき, f(x) を求めよ。 〔一橋大〕 基本15 指針 例えば,f(x)が2次式とわかっていれば,f(x)=ax2+bx+c とおいて進めることが できるが,この問題ではf(x)が何次式か不明である。 →f(x)はn次式であるとして,f(x)=ax+bx-1+......(a≠0,n≧1) とおいて 進める。f(x+1)-f(x) の最高次の項はどうなるかを調べ, 右辺2.x と比較するこ とで次数nと係数αを求める。 なお,f(x) = (定数) の場合は別に考えておく。 5 基本 解答 f(x)=1|この場合は,(*)に含ま れないため、別に考えて f(x) = c(cは定数) とすると, f (0)=1から いる。 これはf(x+1)-f(x)=2x を満たさないから,不適。 よって, f(x)=ax+bx-1+(a0n≧1)(*) とす ると f(x+1)-f(x) =a(x+1)"+6(x+1)"'+.....-(ax+bx"-1+…………) =anxn-1+g(x) ただし, g(x)は多項式で,次数はn-1より小さい。 f(x+1)-f(x)=2xはxについての恒等式であるから,最 高次の項を比較して (x+1)" =x+nCixn-1+nCzx-2+... のうち, a(x+1)"-ax” の最高次 の項は anx-1 で,残り の項はn-2次以下とな る。 n-1=1 ... ①, an=2 ①から n=2 ゆえに、②から a=1 c=1 このとき, f(x)=x2+bx+c と表される。 f(0)=1から anx-1と2xの次数と 係数を比較。 またf(x+1)-f(x)=(x+1)2+6(x+1)+c-(x2+bx+c) c=1としてもよいが, =2x+6+1 結果は同じ よって 2x+b+1=2x この等式はxについての恒等式であるから b+1=0 係数比較法。 すなわち b=-1 したがって f(x)=x-x+1 POINT 次数が不明の多項式は,次と仮定して進めるのも有効

解決済み 回答数: 2