学年

教科

質問の種類

物理 高校生

物理のエッセンスからです。 2ページ目のHighのところの「(だから右辺にマイナスがつく)」と書いてありますが、なぜマイナスがつくか分かりません。 分かる方、易しく教えて頂きたいです🙇🏻‍♀️

62 力学 [解説] 直線上の衝突では反発係数 (はね返り係数) e (0≦e≦1) の式が成り立つ。 いろ いろな書き方があり、自分なりの覚え方をしていればよい。 本書では次の形式で いこう。 衝突後の速度差=-ex (前の速度差) 注意すべきは,速度の差であって,速さの差ではないという点だ。 つまり、 正・負を考えて代入しなければならない(差をとるときの物体の順番は両辺で合わ せる)。そこで衝突後の“速度”を未知数とする。上式の左辺は素直に書けるし, 運動量保存則そのものが速さでなく,速度の式だからだ。速度はもちろん地面に 対する速度。1,2を連立させて解けば,答えの速度の符号が運動の向きを教 えてくれる。 EX1 静止している質量MのQに質量mのPが速 ひで衝突した。 その後のP, Q の速度 UP, UQ (右向きを正) を求めよ。 また, Pがはね返る条件 を求めよ。 反発係数をeとする。 P Vo m M 解 運動量保存則より mvp+Mv=mvo ① eの式より Up-VQ=-e(vo-0)2 衝突後 UP VQ ① +M×② と v を消去し (m+M)up= (m-eM)v m-eM Up = Vo m+M ①-mx② より (m+M)vg=(1+emvo ・③ ③ 図示するときは,分か りやすく正としておく (1+e)m VQ= Vo ・④ m+M Up<0だと Pがはね返るためには, up < 0 となればよい。 よってm<eM 一方, は無条件に正だから, Qは右へ動く当たり前だね。 左の方へ Vp 運動 ちょっと一言 運動量保存則を“後=前”のように書いておくと,このように辺々 で速く計算できる。 ちょっとしたテクニック。 こんな問題ではPが受けた力積がよく問われる。「力積=運動量 の変化」 より mu-mv として求めてもよいが、 作用・反作用を利 用し,Qの運動量変化 Mv0 にマイナスをつけた方が簡単だ。

解決済み 回答数: 1
物理 高校生

青線で囲った部分、n+1じゃなくて、nじゃないですか? 最高次の項をnだと置いているから、a(x+1)∧n-ax∧nじゃないんですか? ここがnだとどういけないんでしょう

42 重要 例題 21 等式を満たす多項式の決定 多項式 f(x) はすべての実数xについてf(x+1)f(x)=2x を満たし, f(0)=1 [一橋大] であるという。このとき, f(x) を求めよ。 指針 例えば、f(x) が2次式とわかっていれば, f(x)=ax2+bx+c とおいて進めることが できるが,この問題ではf(x) が何次式か不明である。 →f(x) は n次式であるとして, f(x)=ax+bx-1+...... (a=0, n ≧1) とおいて 進める。 f(x+1)f(x) の最高次の項はどうなるかを調べ, 右辺2x と比較するこ とで次数 n と係数 αを求める。 なお, f(x) = (定数) の場合は別に考えておく。 f(x)=1 f(x)=c (cは定数) とすると, f(0) =1から 解答 これはf(x+1)f(x)=2x を満たさないから,不適。 よって, f(x)=ax+bx-1+..... (α= 0, n ≧1)(*) とす ると f(x+1)f(x) =a(x+1)"+6(x+1)"'+......-(ax+bx-1+......) =anx-1+g(x) ただし,g(x) は多項式で,次数はn-1より小さい。 f(x+1)f(x)=2xはxについての恒等式であるから,最 高次の項を比較して ・①, n-1=1 ...... ( an=2...... ②② よって 2x+6+1=2x この等式はxについての恒等式であるから b+1=0 すなわち b=-1 したがって f(x)=x-x+1 基本15 この場合は, (*) に含ま れないため, 別に考えて いる。 ◄(x+1)" 練習 f(x) は最高次の係数が1である多項式であり 定 ④ 21 f(x2)={f(x)-ax-b}(x²-x+2) が成り立 びα bの値を求めよ。 ①から n=2 ゆえに、②から a=1 このとき, f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)f(x)=(x+1)+6(x+1)+c-(x2+bx+c)c=1としてもよいが, =2x+6+1 結果は同じ。 =x"+nC1x"-1+nC2.xn-2+... のうち、 n+1/ a(x+1)" -αx" の最高 次の項は anx-1 で, 残 りの項はn-2次以下と なる。 anxn-1と2x の次数と 係数を比較。 POINT 次数が不明の多項式は, 次と仮定して進め 係数比較法。 有効 し、常 5 基本事 12 3 2

未解決 回答数: 1