学年

教科

質問の種類

数学 高校生

基本例題の方では、互いに素でない⇔素数を公約数にもつ、と書かれてあるのですが、Exercisesの方の問題では、公約数gが素数と書かれてありません。なぜなのか教えて欲しいです🙏

530 |基本例題 121 互いに素に関する証明問題 (2) 000 自然数 α, bに対して, aとbが互いに素ならば, a + b と abは互いに素である。 ことを証明せよ。 p.525 基本事項 2 重要 121 a+b abの最大公約数が1となることを直接示そうとしても見通しが立たない。 そこで,背理法(間接証明法)を利用する。 →a+b と ab が互いに素でない, すなわち, a+bとαbはある素数」を公約数 にもつ,と仮定して矛盾を導く。 なお、次の素数の性質も利用する。 ただし,m, n は整数である。 mn が素数 』 の倍数であるとき,またはnはかの倍数である。 1 最大公約数が1を導く CHART 互いに素であることの証明 背理法 (間接証明法)の利用 a+b と ab が互いに素でない, すなわち, a + b と αbは 解答ある素数を公約数にもつと仮定すると とnが互いに素で ない a+b=pk D, ab=pl ② と表される。 ただし, k, lは自然数である。 ...... mnが素数を 公約数にもつ ② から, α または は の倍数である。 α a=pmとなる自然数がある。 の倍数であるとき, = 1 このとき,①から,b=pk-a=pk-pm=p(k-m) となk-mは整数。 りもの倍数である。 (I+\)8=8+18=8+ (I+s)=( これはaとbが互いに素であることに矛盾している。(+0) Ict bがpの倍数であるときも,同様にしてαはの倍数であa=pk-b り,aとbが互いに素であることに矛盾する。 =pk-m') したがって, a+bとabは互いに素である。)=+ ( ' は整数) 参考 前ページの基本例題120 (2) の結果 「連続する2つの自然数は互いに素である」は,整数 の問題を解くのに利用できることがある。 興味深い例を1つあげておこう。 問題 素数は無限個存在することを証明せよ。 [証明] 2以上の自然数とする。 +1は互いに素であるから, n=n (n+1) は異な る素因数を2個以上もつ。 同様にして, n=n(n+1)=ni(n+1) (n2+1) は異なる素因数を3個以上もつ。 「この操作は無限に続けることができるから,素数は無限個存在する 素数が無限個存在す

解決済み 回答数: 1
数学 高校生

数IIの問題です。 鉛筆のとおり0<a-1では?

解 7 オ て 重要 例題 51 2次方程式の整数解 xに関する2次方程式 x2(m-7)x+m=0 の解がともに正の整数である ときの値とそのときの解を求めよ。 く CHART & THINKING 方程式の整数解 [類 名城大] 数学A 基本 110, p.75 基本事項 (整数)×(整数)=(整数) の形にもち込む・・・・・・・ 1 2つの正の整数解をα, β とすると, 解と係数の関係から, α, β, mについて,どのような 関係式が得られるだろうか? → α+β=m-7, aβ=m が得られる。 この2式から (整数) X (整数)=(整数)の形にも ち込もう。すなわち,mを消去し,(αの1次式) (βの1次式)=(整数)とすればよい。 解答 'S T 係数が 2 3 ここ い FA 2次方程式 x2-(m-7)x+m=0 の2つの解をα,β (α≦) inf 方程式を変形すると とすると,解と係数の関係により 1 a+β=m-7,aßb=m m を消去すると a+β=aβ-7 よって aβ-a-β=7 m(x-1)=x2+7x xが正の整数ならば右辺が 正。ゆえに x=1である。 解答にあるとおり αβ=mであるからも ゆえに (α-1) (β-1)-1=7 正の整数である。 ① よって . もしD:al たものが目となるのでは? 0≦a-1≦β-1 よって、 ①から (a-1, B-1)=(1, 8), (2, 4) (α-1) (ß-1)=8... ①m= α, βは正の整数であり, α≦β であるから x2+7x x-1 8 =x+8+ x-1 すなわち m=aβ であるから 20 x-1 x>1の整 x-1=1, 2 (α,β) = (2,9) すなわちm=18 のとき x=2,9x=2,3, (α,β) = (3,5) すなわち m =15 のとき x=3,5 このとき (a, B)=(2, 9), (3, 5) 18-(1-2) から 8 (52-Tey)

解決済み 回答数: 3
数学 高校生

(3)でx=2520l+1までは理解したのですが、 その後の解説から、ユーグリット互除法のように少しずつ変形が行われていて結局どうして答えに行き着くのかが分かりません。 文字も多くて混乱しています。 ご回答よろしくお願いします🙇🏻‍♀️՞

数学Ⅰ・数学A 第3問~第5問は,いずれか2問を選択し, 解答しなさい。 第4問 (選択問題)(配点 20) 17 (1)34と85の最大公約数は アイである。 次に,Nを3桁の自然数とする。 Nと85の最大公約数がアイ であるようなNのうち、最も小さい数は である。 N=ウエオ 102 17 60 数学Ⅰ・数学A (3)4,5,6 の最小公倍数は サシであり,2,3,4,5,6,7,8,9の最小公 2520 倍数はスセンタである。 次に,(2)の方程式 ①の整数解 (x, y) において, xが正で,2,3,4,5,6,7, 8,9のどれで割っても1余るものを考える。 xは 2520 x=スセソタ 1+1 (Zは0以上の整数) (2) 不定方程式 17 7x- アイy=1 について考える。 方程式 ① を満たす1桁の自然数x,yは 5 2 x= カ y= キ であり, 方程式 ①のすべての整数解は, 整数を用いて と表され 17 5 2520 クケk+ カ =スセソタ1+1 が成り立つから ・① 17 4 630 クケ k= チ シテト 1-1) と変形できる。 ここで 630 17 37 ツテト クケ × ナニ +1 (x, y) クケk+ コ [k+ キ と表される。 17 5 2 7 (数学Ⅰ・数学A 第4問は次ページに続く。) である。 よって、考えているxが2番目に小さくなるのは 18 l= ヌネ のときである。

解決済み 回答数: 2