学年

教科

質問の種類

数学 高校生

数学 一枚目が問題と解答で二枚目が自分の考えなのですが、解答は微分で考えてて自分は判別式で考えて答えは同じなのですが、いいのでしょうか?

要 例題 176 2 曲線が接する条件 「共 00000 2つの放物線y=x2 と y=(x-α)2 +2 がある1点で接するとき、定数α の値を求めよ。 CHART & SOLUTION [類 慶応大] 基本174 重要 177 2曲線y=f(x), y=g(x)がx=p の点で接する条件 f(b)=g(カ)かつf'(b)=g'(p) 「2曲線が接する」 とは, 1 点を共有し、かつ共有点における接線 が一致すること(この共有点を2曲線の接点という)。 接点のx座標をとおいて 接点を共有する ⇒f(b)=g(b) 接線の傾きが一致するf'(b)=g' (b) を満たすαの値を求めればよい。 解答 f(x)=x2, g(x)=(x-a)2 +2 とすると f'(x)=2x, g'(x)=-2x+2a 2曲線が1点で接するとき, その接点のx座標をとすると f(p)=g(カ) かつ f'(b)=g'(p) y=f(x)/ y=g(x) p x g(x)=(x-a)2+2 =-x2+2ax-a2+2 f(p)=g(p) が成り立つ。 接点のy座標が一致 よって2=(p-a)2+2 ① *S=V f'(p)=g'(p) Ch 2p=-2p+2a ② 接線の傾きが一致 ②から a=2p ③ 意味する これを①に代入してp=-(p-2p)+2 ゆえに P2=1 ③から,αの値はのと為 p=1のとき -2) これを解いてえにか=±10 α=-2, p=1 のとき a=2 式は a=-2 ly=f(x) 2=2+2から inf. 接点の座標は 275 xa=-2 のとき (-1, 1) y=f(x)+α=2 のとき (1,1) 接線の方程式は 左=2のとき y=-2x-12 x +a=2のとき -10 x の。 01 DS 方 y=g(x) y=g(x) 上の数 以上の 関数 方針 となり、方針図が開範囲が広いことが BACTICE 1769 .0=v - 1,0=D y=2x-1 24010

解決済み 回答数: 1
数学 高校生

絶対値を含む方程式(場合分け)の範囲です。 1枚目2枚目のそれぞれ(2)の問題ですが、 X=1、-1を場合分けする際に 1枚目の時は(ⅱ)-1≦X≦1 2枚目の時は(ⅱ)-1≦X<1 なぜ一緒のこの2つ問題では符号が違うのでしょうか。 どういった違いがあるのでしょうか... 続きを読む

基礎問 18 絶対値記号のついた1次方程式 次の方程式を解け. (1) |.r-1|=2 |精講 |x+1|+|x-1|=4 絶対値記号の扱い方は11で学んだ考え方が大原則ですが、 合はポイントⅠの考え方が使えるならば、 場合分けが けラクです. (1) (解I) 解 HO |x-1|=2 は絶対値の性質より1=±2 よって, x=-1,3 (解Ⅱ) -11={ c-1|= だから, x-1 D (x≥1) -(x-1)(x<1) i) x≧1のとき ① は x-1=2 x=3 これは,x≧1 をみたす. ii) x<1のとき ①は -(x-1)=2 :.x=-1 これは, x<1 をみたす. よって, x=-1,3 (2) i) x<-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)(x-1)=4 -2x=4 ... x=-2 これは,<-1 をみたす. i)-1≦x≦1 のとき +10, -1≦0 だから +1-(-1)- これをみたす (注)くのとき +1301>0 1ェー 28-4 ic これは、1<ェを (1) 甘)、血)より (2) A(-1). ら、②は 上の数直線により、 絶対値の 40となる で場合分 はじめにし た すかどう ① ェの値にかか ②x>1のとき (3) が大きくな くー1の ェが小さく ② ポイント いこと エック 演習問題 18 (1) ☆

解決済み 回答数: 1
数学 高校生

数学の文字入りの方程式の係数について質問です。 写真の(2)の問題が分かりません。 具体的には、 解答はa=0のときX=0になっていますが、 私はa=0のときXは全ての数だと思いました。 なぜならa=0のとき、Xに、どんな数を代入しても、答えがゼロになるのはかわりないと思... 続きを読む

00000 168 重要 例題 99 文字係数の方程式 α は定数とする。 次の方程式を解け。 (1) (a2-2a)x-a-2 (2)2ax²-(6a²-1)x-3a=0 7:52 重要 38, 基本 95 指針 (1) Ax=Bの形であるが, A の部分は文字を含んでいるから, 次のことに注意。 A = 0 のときは、両辺をAで割ることができない (「O で割る」ということは考えない。) ☆0で割れない A≠0, A = 0 の場合に分けて解く。 "STOP= (2) 問題文に「2次方程式」とは書かれていないから, x2 の係数が0のときとでない ときに分けて解く。 CHART 文字係数の方程式 文字で割るときは要注意 0で割るのはダメ! (1) 与式から 解答 a(a-2)x-a-2· ...... ① [1] α(a-2)≠0 すなわち a≠0 かつα=2のとき a-2 (*)(xの係数)=0のとき は,最初の方程式に戻って 考える 基本 (1) (ア) め 指針 x= a(a-2) 1 ゆえに x= a [2] α=0 のとき (*), ① から これを満たすxの値はない。 0.x=-2 [3] α=2のとき, ①から 0.x=0 これはxがどんな値でも成り立つ。 検討 Ax=B の解 A = 0 のとき A=0のとき ) B0 なら 0x=B 解はない (不能) B x= A a0 かつαキ2のとき 1 x=- B=0 なら 0x= 0 したがって a ← 解はすべての数 a=0のとき 解はない (不定) a=2のとき 解はすべての数 (2)[1] 2a0 すなわち α = 0 のとき, 方程式は すなわち,解は x=0 [2] α=0 のとき, 方程式から よって (x-3a) (2ax+1)=0 x=3a, - 1 2a a=0のとき x=0 x=0(x2の係数) = 0 のときは、 最初の方程式に戻って考 える。 <1 2a 2a -3a- -6a² X-30 1 → 1 -3a -(6a2-1) したがって 1 a≠0のとき x=3a, a≠0のとき 3 2a 解答

解決済み 回答数: 2
数学 高校生

(1)の問題です。分からなくて解答見ました。 互除法を使って計算するところまでは理解したのですが、よってのあとからがわかりません。 解説お願いします🙇

本 例題 126 1次不定方程式の整数解 (1) 次の等式を満たす整数x、yの組を1つ求めよ。 (1) 11x+19y=1 465 ①①①① (2) 11x+19y=5 p. 463 基本事項 1.2 CHART & SOLUTION 1次不定方程式の整数解 ユークリッドの互除法の利用 (1)1119は互いに素である。 まず, 等式 1x +19y=1のxの係数 11 とyの係数 19 に 互除法の計算を行う。 その際, 11-19 であるから, 11を割る数, 19 を割られる数として 割り算の等式を作る。 a=11, 6=19 とおいて,別のように求めてもよい。 (2)xの係数とyの係数が (1) の等式と等しいから, (1) を利用できる。 (1)の等式の両辺を 5 倍すると 11(5x) +19(5y)=5 よって、 (1) で求めた解を x=p, y=q とすると, x=5p, y=5g が (2)の解になる。 解 (1) 19=11.1 +8 移すると 8=19-11・1 11=8・1+3 移すると 3=11-8・1 8=3・2+2 移すると 2=8-3-2 3=2・1+1 移すると よって 1=3-2-1 1-3-2-1-3-(8-3.2) 1 =8⋅(-1)+3.3=8⋅(-1)+(11-8.1).3 =11・3+8・(-4)=11・3+ (19-11・1・(-4) =11・7+19・(-4) 11・7+19・(-4)=1 なわち ① えに, 求める整数x、yの組の1つは x=7, y=-4 2 ①の両辺に5を掛けると 11(7・5)+19・{(-4)・5}=5 すなわち 11・35+19・(-20)=5 解 (1) α=11,6=19 とする。 8=19-11・1=b-a 3=11-81 =a-(b-a)-1=2a-b 2=8-3-2 =(b-a)-(2a-b).2 =-5a+3b 1=3-2.1 =(2a-b)-(-5a+3b)・1 =7a-4b すなわち 11・7+19・(-4)=1 よって, 求める整数x, yの 組の1つは x=7, y=-4 よって, 求める整数x, yの組の1つは x=35, y=-20 ■注意 (2) の整数解にはx=-3, y=2 という簡単なものも ある。 このような解が最初に発見できるなら,それを 答としてもよい。 RACTICE 126° 次の等式を満たす整数x, yの組を1つ求めよ。 (1) 19. +26y=1 (2) 19x+26y=-2 慎重に

解決済み 回答数: 1
数学 高校生

例題16 (2)の問題です。因数分解です。 2枚目自分で解いたものなのですがなぜこの答えではダメなのか、どこで間違えているのか教えて欲しいです。 よろしくお願いいたします。

基本 例題 16 因数分解 (対称式・交代式 ) 次の式を因数分解せよ。 (1) a(b+c)2+b(c+a)+c(a+b)-4abc ② x(y2-22)+y(z2-x2)+2(x²-y2) 20 CHART & SOLUTION 対称式・交代式の因数分解 1つの文字について降べきの順に整理する どの文字についても次数は同じ。 どれか1つの文字に着目して整理する。 (1) a²+a+ (2) x²+x+ 解答 (1) α(b+c)2+b(c+a)+c(a+b)2-4abc =a(b+c)2+b(c2+2ca+α)+c(a²+2ab+62)-4abc =(b+c)a²+{(b+c)2+2bc+2bc-4bc}a+bc2+b2c =(b+c)a²+(b+c)2a+bc(b+c) =(b+c){a²+(b+c)a+bc} =(b+c)(a+b)(a+c) =(a+b)(b+c)(c+α) (2)x(y2-22)+y(z2-x2)+2(x²-y²) 1=(-y+z)x2+(y2-22)x+yz-yz L =-(y-z)x2+(y+z)(y-z)x-yz(y-z) =-(y-z){x2-(y+z)x+yz}] =-y-z)(x-y) (x-z) =(x-y) (y-z)(z-x) INFORMATION 00000 [(2) 鹿児島大 ] 33 基本 14.15 1章 aについて降べきの順に整 理する。 ●aka+● ← (b+c) が共通因数。 これを答えとし 輪環の順に整理。 について降べきの順に整 理する。 ●x²+x+● (y-z) が共通因数。 これを答えとしてもよい。 輪環の順に整理。 3つの文字についての式は,なるべく輪環の順に書くようにすると 防ぐことができる。 因数分解

解決済み 回答数: 1