学年

教科

質問の種類

数学 高校生

この2番目の問題についてなんですが,なぜわざわざ,Pk+1とPk の比を取ってるんですか? 指針にも書いてあるのですが,あまりよくわからなく,理解ができません。

423 「さいころを続けて100回投げるとき 1の目がちょうど回 (0≦k≦100) 出る確 率は100CkX. 指針 (ア) 6100 であり,この確率が最大になるのはk=1のときである。 メーカーの [慶応大] 基本49 求める確率をかとする。この目がを回出るとき、他の目が100-4回出る。 (イ)確率力の最大値を直接求めることは難しい。 このようなときは、隣接する2項 +1 とかの大小を比較する。 大小の比較をするときは,差をとることが多い。し かし,確率は負の値をとらないことと "Cr= r!(n-r)! n! を使うため、式の中に累乗 や階乗が多く出てくることから,比をとり、1との大小を比べるとよい。 pk pk+11<ph+1 (増加), pk pk +1<1>D+1 (減少 ) CHART 確率の大小比較 It Pk+1 をとり、1との大小を比べる pk 2章 8 ⑧ 独立な試行・反復試行の確率 確率を とすると 「さいころを100回投げるとき 1の目がちょうど回出る 解答 100-k pk=100Ck 75100-k =100CkX 人の中か 6100 反復試行の確率。 Pk+1 100!.599-k ここで pk k! (100-k) (99-k)! +(k+1)k! (k+1)!(99-k)! (99-k)! 100-k ->1 5(k+1) 5.599-* 5(k+1) k!(100-k)! 5100-(+1) 100! 5100-k p+1=100C(e+) × 6100 599-k 100-k ・・・ 代わりに +1とおく。 pk+1- > 1 とすると pk 両辺に 5(k+1) [>0] を掛けて 100-k>5(k+1)=Cal 95 これを解くと k<=15.8・・・ 6 よって, 0≦k≦15のときか DDk+1は≦k≦100を満たす 整数である。 pk Dk+1 <1 とすると 100-k<5(k+1) P(ARB) pkの大きさを棒で表すと これを解いて 95 k>=15.8・・・ 6 PLAY 最大(E) n(U) 増加 減少 よって、16のとき pk > Pk+1 Po<p<<15<p16, したがって P16> D17> ・>P100 3つめ 人 よって, D が最大になるのはk=16のときである。 2012 100k 15 17 16 99 TE 88

解決済み 回答数: 1
数学 高校生

この問題の(3)についての質問です。 f(x)とg(x)のグラフの上下判定をどうやってしているのかがわかりません。 また、どちらも3次式なのに、(3)では1/6公式を使っています。なぜ使えたのか、どうやって使えるものと使えないものを見分けるのか教えてください。 よろしくお願... 続きを読む

正の実数を実数とする。 f(x)=x-3x2 とし, 曲線 y=f(x) を C1, 曲線 y= fx-p+g を C とする。 C2 が点(1, 2) を通るとき, 以下の問に答えよ。 (1) gを用いて表せ。 (2) 2曲線C1, C, が異なる2点で交わることを示せ。 (3)2曲線C1, C, で囲まれた部分の面積をSとする。 S=8 となるとき のかの値を求めよ。 (1)C2は y=f(x-p)+q =(x-p)² - 3(x-p³ + q (3) fx-8(火)=3p(4-1)3xx-(p+0} で、P>0であるから、1<x<P+1のとき、 fw<g(x) fw-g(x) <0 つまり これが点(1-2)を通るとき であるから, -2 = (1-p)² - 3 (1-p)² + 2 よって、8=p-3P (日) (2) (1)より、C2は y=(x-p3-3(x-p5+p-sp ··· Y = x²= (³p + 3) x² + (3p²+ 6p) x − 3p²¬³p ここでg(x)=ペー(3p+3)+(346) X-3-3P とおくと、 fw-g(x) = 3px=(3+6P)x+3p+3P = 3p {ー(p+2)x+(+1} 3P(x-1){x(p+1)} より、f(x)=g()をみたすxは x=1, p+1 ここでP>0より P+1>1であるから、 2曲線CC2はx座標が1, 1.pt1の異なる2点 で交わる。 P+1 S = {gw-fox) | dhe = P+1 -3p) (x-1) 10-(p+1)} obc -3p (-1) + (PH-1) ³² p 2 よってS=8のとき =8 4 18 :pa16 Proより、p=2

解決済み 回答数: 2
数学 高校生

(2)で私はx=nから始めたのですが答えがどうしても合いません。nではダメなのでしょうか。教えて頂きたいです🙇

254 重要 例題 161 面積と数列の和の極限①①①①① 曲線 y=ex をCとする。 ・cos21. (1) C上の点P(0, 1) における接線とx軸との交点を Q とし,Qを通りx 軸に垂直な直線とCとの交点をP2とする。Cおよび2つの線分 PiQ1, QP2 で囲まれる部分の面積Sを求めよ。 (2)自然数nに対して, PrからQn, Pn+1 を次のように定める。C上の点P における接線とx軸との交点をQn とし, Qn を通りx軸に垂直な直線と C との交点をP1 とする。 Cおよび2つの線分 PQ QnPn+1 で囲まれる部 分の面積Sを求めよ。 00 n, たが、 (3) 無限級数ΣSnの和を求めよ。 [類 長岡技科大 ] n=1 基本153 CHART & SOLUTION (1) 曲線 y=f(x) 上のx=αの点における接線の方程式は y-f(a)=f'(a)(x-a) 面積S1 は, 0 を原点として 曲が をしている区間 =2 (Cおよび3つの線分P10, OQ1, QiP2 で囲まれる部分) (OPQ) と考えると求めやすい。 (2) Pr(an,e-an) とすると, 点P" における接線とx軸との交点のx座標, すなわち, 点 Q のx座標が、点P+1 の x 座標 α+1 と等しいことから, 数列{a} の2項間漸化式を作る ことができる。 これから一般項 αn が求まり, (1) と同様に定積分を計算することで、面積Sを求めるこ とができる。 (3) 数列 {Sn} は等比数列となるから、無限等比級数の和を考えることになる。 常に y20 解答 A-CO -sin2=ipint-asin (1) -x y = e¯x 5 v' ==-x ib VA 20, cos から

解決済み 回答数: 1