学年

教科

質問の種類

数学 高校生

三角比のこの問題が何回やってもわからないので教えていただきたいです。 2、3枚目の写真のやり方でやりましたが、なぜこの解き方だと正しい答えにならないのかがわかりません。 よろしくお願いします。答えは1/4+√5/4です。

30% 45 248 半径 10 円に内接する止n角形の1 ら正n角形の1辺に下ろした垂線の長さを求めよ。 発展問題 例題 36 二等辺三角形ABC の頂角Aの大きさを36°,底角Bの二等分線が辺 指針 解答 AC と交わる点をDとし, BC=2 とする。 これを用いて, sin 18°の 値を求めよ。 図で,∠BAE=18°, BE =1であるから, AB がわかると, sin 18° の値が求められる。 △ABC∽△BCD を利用する。 △ABCにおいて,∠A=36° ∠B=∠C であるから A 第4章 図形と計量 180°-36° ∠B= ∠C= =72° 2 よって, △BCD において 72° ∠DBC= -=36°, ∠C=72° 2 ゆえに、2組の角がそれぞれ等しいから △ABC∽△BCD よって AB:BC=BC:CD ・① E ここで,∠DAB=∠DBA=36° より △DAB は DA=DB の二等辺三角形であり, △ABC∽△BCD より BCD は BC=BD の二等辺三角形である。 ゆえに DA=DB=BC=2 B 2- C よって, AB=x とおくと, CD=AC-AD=x-2であるから,① より ゆえに x:2=2: (x-2) x2-2x-4=0 すなわち x(x-2)=4 x>0であるから x=1+√5 したがって, Aから辺BC に垂線 AEを下ろすと, ∠BAE=18° であるから BE_1 x 5 +1 √5-1 √5-1 = 答 (√5+1)(√5-1) 4 sin18°= AB 249 次の問いに答えよ。 (1) 例題 36 の図を利用して, cos 36° の値を求めよ。 (2) 右の図は, 1辺の長さが1の正五角形である。 (1)の結果を利用して, 対角線 BE の長さを求めよ。 B A C D E

解決済み 回答数: 1
数学 高校生

a≧1のとき、f(a)=f(a+3)になるとあるのですが、aとa+3が1を境に狭間ってた場合も、f(a)=f(a+3)が成り立つことは無いんですか?? 至急解き方教えて欲しいです🙇‍♀️🙇‍♀️

286 重要 例題 191 区間全体が動く場合の最大・最小 f(x)=x-10x2+17x +44 とする。 区間 a≦x≦a+3 における f(x)の 最大値を表す関数 g(α)を, αの値の範囲によって求めよ。 SOLUTION CHART 最大 最小 解答 • D0000 グラフ利用 極値と端の値に注目・大島 まず y=f(x)のグラフをかき、 αの値が変わると 区間 a≦x≦a+3 が動く。 内にあるか, 区間の両端の値f(a) f (a+3) のどちらが大きいかに着目して 幅3の区間 α≦x≦a+3 を左側から移動しながら, 極大値をとるxの値が区間 合分けをする。 注意すべき点はx>1の場合にf(a)=f(a+3) となるのがあ ること。このαとxの大小によっても場合分けをしなくてはならない。 f'(x)=3x2-20x+17=(x-1)(3x-17) f'(x) =0 とすると x=1. 17 3 : 重要 例題 x, y, zは (1) xのと (2)x3+ya CHART O 条件 (1) Þ t (2) 増減表から,y=f(x) のグラフは右の図のようになる。 [1] a+3 <1 すなわち a<-2 のとき g(a)=f(a+3)=(a+3)-10(a+3)2 +17(a+3)+44 =a3-a2-16a+32 [2] α+3≧1 かつ a <1 すなわち -2≦a <1のとき g(a)=f(1)=52 a≧1 のとき,f(a)=f(a+3) とすると a³-10a²+17a+44=a³-a²-16a+32 9a2-33a-12=0 整理すると よって (3a+1)(a-4)=0 から a=4 [3] 1≦a<4 のとき [4] 4≦a のとき [1]f(x) ゆえに x 1 17 3 f'(x) + 0 (x)極大 y 52 44 g(α)=f(a)=α-10α+17a+44 g(a)=f(a+3)=α-α²-16a+32 [2] Y y=f(x); [4] [3] y y=f(x): y y-fx) 解 (1)条 ①か つの DI (2)

解決済み 回答数: 1
数学 高校生

(3)の面積を求める問題はベータ関数を使う以外に方法はないのでしょうか? また、入試でベータ関数は使っていいですか?

80 兵庫医科大<記述 (過程含む)> 曲線 C: y=x^-9x3 +27x2 -31x + 12 が 1本の直線と異なる2点P, Qで接する。 次の問いに答えなさい。 (1)x軸,y軸との共有点をすべて求め,それらの座標を使って曲線Cのグラフの概 形を描きなさい。 (2) 直線 PQ の方程式を求めなさい。 (3) 曲線 Cと直線 PQ で囲まれた部分の面積を求めなさい。 (1) 着眼点 (1) 因数分解する。 (2) 接点の座標を(t, -9t+27f2-31t+12) とおいた接線とCが,さらに異なる点 で接する条件を考える。 または、接線の方程式をy=g(x) とおき, 2点P,Qのx座標をpg とおくと x-9x3 +27x2-31x+12-g(x)=(x-p)2(x-g)2 はxの恒等式となる。 (3) Cの方程式から接線の方程式を引き, 接点間で定積分する。 解法 Cと軸との共有点の座標は (0,12) C:y=x-9x3+ 27x2 -31x + 12 ......① また、①の右辺をf(x) とおくと 1 -9 27 -31 12 f(1) = 0 1 -8 19 -12 であるから, 右の組立除法により 1 -8 19 -12 0 y=(x-1)(x-3)(x-4 1 -7 12 と変形できるから, Cとx軸との共有点は (1, 0), (3, 0), (4, 0) 3 1 -7 12 0 3. -12 よって,Cのグラフは下図のようになる。 1 -4 0 Ay 12 O 3 x (2)Cと直線の接点の座標を (t, t-9t3 + 27t2-31t12) とおくと

解決済み 回答数: 1