学年

教科

質問の種類

数学 高校生

⑵です。 tでおかないやり方でやったら、全然答えと合いません😭 どこが違うかおしえてほしいです! ちなみに、それと似たような問題を解いた時は、普通に答えと会いました!(写真3枚目)

260- せよ 161 三角方程式・不等式の解法 (4) 0のとき、次の方程式、不等式を解け。 √3 sin+cos0+1=0 ... 合成利用 0000 cos 20+ sin20+1 > 0 基本 160 指針 sin, cos が混在した式では,まず, 1種類の三角関数で表すのが基本。 特に、同じ周期の sin と cos の和では, 三角関数の合成が有効。 (1) sine coseの周期は2π (2) in 20, cos 20 の周期は であるから,合成して, sin (0+α) の方程式, sin (20+α)の不等式を解く。 なお,0+α など, 合成した後の角の変域に注意。 CHART sin と cos の和 同周期なら合成 160の変形→ DEBETUTAS 注意が必 YA (1)√3sin9+cos0=2sin(0) であるから,方程式は 解答 2 sin (0+)+1=0 ゆえに sin(0+/--/1/27 =t とおくと,00≦x のとき 6 6 7 この範囲で sint=- を解くと t= 6π よって, 解は π =π 6 (2) sin20+cos20=√/2sin(20+4) であるから,不等式は Vsin (20+4) +1>0 ゆえに sin (20) > 1/12 20+=t とおくと,0≦0≦πのとき とおくと,00≦のときts+ π 2 4 この範囲で sint> を解くと 0 YA 2 (1,1) √2 -10 5 7 st< π, -π<t: 4 すなわち20+ 5 > 4 一π, TC <20+ 9 YA y=sint 44 1 よって,解は 0≤0< 3 2016 2 4T 0 練習 002 のとき,次の方程式、不等式を解け。 ② 161 (1) sinat IT √2 4

解決済み 回答数: 1
数学 高校生

(2)を2枚目のように解きたいのですが、どうすれば良いでしょうか?

446 基本 例題 24 数列の和と一般項, 部分数列 00000 +αzn-1 を求めよ。 |初項から第n項までの和 SnがSn=2n²-nとなる数列{a} について (1) 一般項 an を求めよ。 (2) 和a1+a3+as+ (1)初項から第n項までの和S” と一般項αn の関係は P.439 基本事項4 基本は ORGONE 指針 an よってan=S-S-1 n≧2のとき Sn=a+a2+....+an-1+an -)S-1=a+a2+......+an-1 Sn-Sn-1= n=1のとき a₁ =S₁ ”を求める (2)数列の和→ 和 Sm がnの式で表された数列については,この公式を利用して一般項α) まず一般項(第ん項)をんの式で表す 第1項 第2項 第3項, ....... 第k項 a1, a3, a2k-1 as, ., であるから, an に n=2k-1 を代入して第ん項の式を求める。 なお、数列 sasasaのように、数列{a}からいくつかの項を取り いてできる数列を, {an} の部分数列という。 00 (1) n≧2のとき an=Sn-Sm-1=(2m²-n)-{2(n-1)-(n-1)}) 815) 解答 =4n-3 ....・・ ① また a=Si=2・12-1=1_1 ここで, ① において n=1 とすると α1=4・1-3=1 よって, n=1のときにも①は成り立つ。 したがって an=4n-3 (2)(1) より,a2k-1=4(2k-1)-3=8k-7であるから n a1+as+as+…………+azn-1=Ya2k-1=2(8k-7) n d k=1 解答 =22であるから Sn-1-2(n-1)-(n-1 初項は特別扱い anはn≧1で1つの式に 表される。 la2k-1 は αn=4n-3にお いてnに2k-1 を代入。 検 検討 k=1 8.1m(n+1)-7n (=n(4n-3)( nan=S,-Sm-」 となる場合 )n(I k,1の公式を利用。 例題 (1) のように,an=Sn-Sn-1 でn=1とした値と αが一致するのは, S の式でn=0と したとき So=0 すなわち nの多項式 S の定数項が 0 となる場合である。もし、 S=2n²-n+1(定数項が0でない) ならば, α=S=2, an=Sn-Sμ-1=4n-3 (22)とな り4n-3でn=1とした値とαが一致しない。 このとき, 最後の答えは 「a=2, n=2のときa=4n-3」 と表す。(1 練習初項から第n項までの和Sが次のように表される数列{an}について 一般項 ...... ② 24 an と和atas+a++α3n-2 をそれぞれ求めよ。 (1)Sn=3n²+5n (2) Sn=3n²+4n+? 459 EXI

解決済み 回答数: 1