数学
高校生
解決済み

(2)を2枚目のように解きたいのですが、どうすれば良いでしょうか?

446 基本 例題 24 数列の和と一般項, 部分数列 00000 +αzn-1 を求めよ。 |初項から第n項までの和 SnがSn=2n²-nとなる数列{a} について (1) 一般項 an を求めよ。 (2) 和a1+a3+as+ (1)初項から第n項までの和S” と一般項αn の関係は P.439 基本事項4 基本は ORGONE 指針 an よってan=S-S-1 n≧2のとき Sn=a+a2+....+an-1+an -)S-1=a+a2+......+an-1 Sn-Sn-1= n=1のとき a₁ =S₁ ”を求める (2)数列の和→ 和 Sm がnの式で表された数列については,この公式を利用して一般項α) まず一般項(第ん項)をんの式で表す 第1項 第2項 第3項, ....... 第k項 a1, a3, a2k-1 as, ., であるから, an に n=2k-1 を代入して第ん項の式を求める。 なお、数列 sasasaのように、数列{a}からいくつかの項を取り いてできる数列を, {an} の部分数列という。 00 (1) n≧2のとき an=Sn-Sm-1=(2m²-n)-{2(n-1)-(n-1)}) 815) 解答 =4n-3 ....・・ ① また a=Si=2・12-1=1_1 ここで, ① において n=1 とすると α1=4・1-3=1 よって, n=1のときにも①は成り立つ。 したがって an=4n-3 (2)(1) より,a2k-1=4(2k-1)-3=8k-7であるから n a1+as+as+…………+azn-1=Ya2k-1=2(8k-7) n d k=1 解答 =22であるから Sn-1-2(n-1)-(n-1 初項は特別扱い anはn≧1で1つの式に 表される。 la2k-1 は αn=4n-3にお いてnに2k-1 を代入。 検 検討 k=1 8.1m(n+1)-7n (=n(4n-3)( nan=S,-Sm-」 となる場合 )n(I k,1の公式を利用。 例題 (1) のように,an=Sn-Sn-1 でn=1とした値と αが一致するのは, S の式でn=0と したとき So=0 すなわち nの多項式 S の定数項が 0 となる場合である。もし、 S=2n²-n+1(定数項が0でない) ならば, α=S=2, an=Sn-Sμ-1=4n-3 (22)とな り4n-3でn=1とした値とαが一致しない。 このとき, 最後の答えは 「a=2, n=2のときa=4n-3」 と表す。(1 練習初項から第n項までの和Sが次のように表される数列{an}について 一般項 ...... ② 24 an と和atas+a++α3n-2 をそれぞれ求めよ。 (1)Sn=3n²+5n (2) Sn=3n²+4n+? 459 EXI
t A₂+as+ C++ = (a+as+ Artax +as+ + Con) しい azn-1 A3 + A4 +11 Gen) -(ax+a++... +920) +azn)
数列

回答

✨ ベストアンサー ✨

(1)よりa₂ₖ = 4×(2k)-3 = 8k-3
だから
a₂+a₄+a₆+……+a₂ₙ
= Σ[k=1〜n] a₂ₖ
= Σ[k=1〜n] (8k-3)
= 8×(1/2)n(n+1) -3n
= n(4n+1)

したがって
a₁+a₃+a₅+……+a₂ₙ₋₁
= a₁+a₂+a₃+……+a₂ₙ - (a₂+a₄+a₆+……+a₂ₙ)
= 2(2n)²-2n - n(4n+1)
= 8n²-2n -4n²-n
= 4n²-3n
= n(4n-3)

です

お茶っぱ

わかりやすかったです。ありがとうございます

この回答にコメントする
疑問は解決しましたか?