学年

教科

質問の種類

数学 高校生

[1]の条件は思いつくのですが、[2]と[3]の条件が自分ではなかなか思いつきません。こういうのは何回もこの問題を解くしかないのでしょうか?

8 重要 例題 関数とその逆関数のグラフの共有点(2) 00000 f(x)=x²-2x+k(x≧1) の逆関数をf'(x) とする。 y=f(x) のグラフと |y=f'(x) のグラフが異なる2点を共有するとき, 定数んの値の範囲を求めよ。 基本10 指針 逆関数f'(x) を求め, 方程式f(x)=f(x) が異なる2つの実数解をもつ条件を考え てもよいが、無理式が出てくるので処理が煩雑になる。ここでは,逆関数の性質を利 用して、次のように考えてみよう。 共有点の座標を (x, y) とすると, y=f(x) かつy=f-1 (x) である。 ここで,性質 y=f'(x)=x=f(y) に着目し,連立方程式 y=f(x), x=f(y) が異なる2つの実数解 (の組) をもつ条件を考える。 x, yの範囲にも注意。 共有点の座標を (x, y) とすると tv= 解答 y=f(x) かつy=f-1(x) 参考 y=x2-2x+kとす ると y=f-1(x) より x=f(y) であるから,次の連立方程式を考 よって える。 y=x2-2x+k(x≧1) ①, x=y2-2y+k(y≧1) ① ② から y-x=(x+y)(x-y)-2(x-y) したがって (x-y)(x+y-1)=0 x1,y≧1であるから x+y-1≧1 ゆえに x=y よって, 求める条件は, x=x²-2x+k すなわち x2-3x+k=0が x≧1 の異なる2つの実数解をもつこと である。 B すなわち, g(x)=x2-3x+kとし, g(x) =0の判別式をD こ とすると、次のことが同時に成り立つ。 [1] D> 0 x2-2x+k-y= 0 x=1±√12-(k-y) x≧1から x=√y-k+1+1 xとyを入れ替えて,逆関 数は f1(x)=√x-k+1 +1 A 逆関数f(x) の値域 は 関数 f(x)の定義域と 一致するから y≧1 B 放物線とx軸がx≧1 の範囲の異なる2点で交わ る条件と同じ。 y y=g(x) [2] y=g(x) の軸がx>1の範囲にある [3]g(1) 20 [1] D=(-3)2-4・1・k=9-4k ={(x)}(1) 9 よって 9-4k>0 ゆえに k< 3 4 3 3 + 0 3 [2] 軸は直線 x = x=1/2で12/28>1である。 [3]g(1)≧0から 12-3.1+k≧0 よって k≧2 4. ③④の共通範囲をとって 9 2≤k<- (S) or N 4

解決済み 回答数: 1
数学 高校生

⑴の(iii)の別解なのですが、三次関数とかでもないのにどうして増減表を使って求められるのかわかりません。あと単調増加に極値はあるものなのですか。よろしくお願いします🙇

4 次の問題について,しずかさん、れいさん,ゆうだいさんの3人が議論をしている。 問題ある学校の文化祭では、 縦8mの垂れ幕が垂直な壁にかかっていて, 垂れ幕の下端があ る人の目の高さより2m上方の位置にある。この人が壁から何m離れて見ると, この垂れ幕 の上端と下端を見込む角が最大となるか。 しずか 右図のように、 直線 l を壁として, 点Aを垂れ幕の上 端, 点Bを垂れ幕の下端, 点Dを垂れ幕を見ている人 の目の位置とした。 この垂れ幕の上端と下端を見込む角 ∠ADB の大きさを0とおいて, 0が最大となるときの 点Dの位置を求めればよい。 ・れい 0が最大となるときの点Dの位置を求めたいから,点D から直線 l に垂線 DC を下ろし、 線分 DC の長さを xm とする。そして, 三角比を使って式を作ればよい。 ゆうだい D l A 18m B 12m 角度の問題だから, 2点A, B を通り半直線 CD に接する円をかいて, 円周角の定理あるいは 円周角の定理の逆を使えばよい。 このとき、次の問いに答えよ。 (1) 図とれいさんの考えを使って問題を解くとき、次の小問に答えよ。 (i) ∠ADC= α, ∠BDC = β として, tan0 を tana, tan β を用いて表せ。 (ii) tan 0 を x を用いて表せ。 (iii) 0 が最大となるときの, tan0 と xの値をそれぞれ求めよ。 (2) 図とゆうだいさんの考えを使って問題を解くとき,この人がこの垂れ幕の上端と下端を見込 む角が最大となる位置は, ゆうだいさんのかいた円と半直線 CD との接点になることを示せ。

解決済み 回答数: 1