学年

教科

質問の種類

数学 高校生

フヘホについて質問です。3枚目の解答で210となっているところは√nが入ると思ったので10にしたのですが、なぜ違うかがわかりません。

293 太郎さんのクラスでは、確率分布の問題として、2個のさいころを同時に 投げることを 72回繰り返す試行を行い、2個とも1の目が出た回数を表す確 変数Xの分布を考えることとなった。 そこで 21名の生徒がこの試行を行った。 (1)次は二項分布 (アイ) に従う。このとき、k-アイ 123 とおくと,X=yである確率は,P(X=r)=C,D(1-0) エオ (r=0, 1, 2, k)である。また,Xの平均(期待値)はE(X) EX 標準偏差は (X)= である。 カ 解答群 0 k r ① ktr ② k-r (2)21 名全員の試行結果について、2個とも1の目が出た回数を調べたところ。 次の表のような結果になった。 なお、5回以上出た生徒はいなかった。 回数 0 1 2 3 4 計 人数 2 7 7 3 2 21 この表をもとに、確率変数 Y を考える。 Yのとり得る値を 0, 1,2,3,4と し、各値の相対度数を確率として, Yの確率分布を次の表の通りとする。 Y 0 1 2 3 4 計 P 21 22 1-3 13 2-2 ス シ 21 このときの平均はE(Y)= セン タチ 標準偏差は (Y) = √530 である。 21 (3)太郎さんは,(2)の実際の試行結果から作成した確率変数の分布について。 (1)のように、 その確率の値を数式で表したいと考えた。 そこで, Y=1, Y=2 である確率が最大であり,かつ,それら2つの確率が等しくなっている 確率分布について先生に相談したところ、その代わりとして、新しく次のよ うな確率変数Z を提案された。 先生の提案 Zのとり得る値は 0, 1, 2, 3, 4であり,Z=rである確率を P(Z=r)=α- (r=0, 1, 2, 3, 4) r! とする。ただし、を正の定数とする。 また,r=(x-1) 2-1 であり、 0!=1,11=1, 2!=2,31=6, 4!=24 である。

解決済み 回答数: 1
数学 高校生

なぜマーカー部分のような考えになるのかがわかりません。0.05よりも小さいとき、2の仮定が正しくない。となるのはなぜですか? 教えてください🙇

例題20 仮説検定 ベッドメーカーが,すでに販売しているマットレス A を改良して新製品 B を開発した。 無作為に選 んだ35人に2つのマットレス A, B を使ってもらい、どちらが寝心地がよいと感じるかを回答し てもらったところ, 25人がBと回答した。 この回答のデータから, [1] B の方が寝心地がよいと評価される と判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 として考察せよ。 ただし, 公 正なコインを35回投げて表の出た回数を記録する実験を200セット行ったところ次の表のように なったとし,この結果を用いよ。 表の回数 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 計 度数 1 2 3 7 11 15 21 30 32 24 18 12 10 6 3 3 1 1 200 考え方 どちらの回答も全くの偶然で起こるという仮定を立てて, コイン投げの実験結果から表が25回以上出る 場合の相対度数を調べる。 解答 主張 [1] が正しいと判断してよいかを考察するため,次の仮定を立てる。 [2] どちらの回答も全くの偶然で起こる コイン投げの実験結果を利用すると、 表が25回以上出る場合の相対度数は 3+1+1 5 = -=0.025 200 200 これは0.05より小さいから,[2]の仮定が正しくなかったと考えられる。 よって, [1] の主張は正しい, つまりBの方が寝心地がよいと評価されると判断してよい。

解決済み 回答数: 1
数学 高校生

一番についてです。 解答最初の方に、自然数 M N を用いて、とありますが、なぜ 同じ文字を使ってはいけないのでしょうか? 文字の前に4 や 6がついている時点で、4の倍数や 6の倍数になることは確定ですし、 たとえ 同じ文字を使っても 条件からは外れなかったのでいいか... 続きを読む

基本 例題 108 倍数, 互いに素に関する証明 は自然数とする。 α+5は4の倍数であり, α+3は6の倍数であると α+9 は 12 の倍数であることを証明せよ。 自然数αに対し,a と α+1は互いに素であることを証明せよ。 CHART & SOLUTION p.426 427 基本事項 1.5 倍数である, 互いに素であることの証明 (1)mnを自然数としてa+5=4m,a+3=6n と表される。 そして、「αの倍数かつ の倍数ならば,aとbの最小公倍数の倍数」であることを利用する。 また,αとőが互いに素のとき 「akが6の倍数ならば、はんの倍数」であることを 利用してもよい (別 参照)。 (2) 互いに素である 最大公約数が1 最大公約数をg とおいて,g=1であることを証明すればよい。 自然数 A, B について AB=1 ⇔ A=B1 を利用する。 解答 (1)a+5, a +3 は,自然数nを用いて a+5=4m, a+3=6n と表される。 a+9= (a+5)+4=4m+4=4(m+1) ① ② よって、 ① よりα+9 は4の倍数であり,② よりα+9 は 5の倍数でもある。 したがって,a+9は46の最小公倍数12の倍数である。 a+9=(a+3)+6=6n+6=6(n+1) 割る約数が ・互いに忙しか 素数とバ てい 別解 (1) ①,②から 4(m+1)=6(n+1) すなわち 2m+1=3(n+1) 2と3はないに素である からm+1は3の倍数 である。 よって m+1=3k(kは自然数) と表される。ゆえに 4

解決済み 回答数: 1
数学 高校生

なぜ、白玉は黒玉より多いの仮説は同じなのですか? また、同じだとした時になぜ7回以上で求められるのですか? 黒と4回ずつとかじゃだめなのですか?

補充 例題 15. 反復試行の確率と仮説検定 00000 箱の中に白玉と黒玉が入っている。 ただし, 各色の玉は何個入っているかわ からないものとする。 箱から玉を1個取り出して色を調べてからもとに戻す 掲げた うこと すると さい る実験 -O 1200 計る。 つの目が 0.035 いったと やす! の方 べてい ことを8回繰り返したところ,7回白玉が出た。箱の中の白玉は黒玉より多 いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし て考察せよ。 CHART & SOLUTION 「箱の中の白玉は黒玉より多い」という主張に対して,次の仮説を立てる。 仮説 白玉と黒玉は同じ個数である 基本 155 そして,仮説,すなわち,箱から白玉を取り出す確率が1/12 であるという仮定のもとで7回 以上白玉を取り出す確率を求める。 なお、箱から玉を取り出してもとに戻すことを8回繰 り返すから、反復試行の確率(数学A)の考え方を用いて確率を求める。 解答 反復試行の確率 1回の試行で事象A の起こる確率をする。 この試行を回行う反復試行で,A がちょうど回起こる確率は Crp (1-p)-tat r=0, 1,, n なお, "Cr は異なるn個のものから異なる個を取り出して作る組合せの総数である。 箱の中の白玉は黒玉より多い ・・・・ [1] の主張が正しいかどうかを判断するために,次の仮説を立て る。 仮説 箱の中の白玉と黒玉は同じ個数である ・[2] [2] の仮説のもとで, 箱から玉を1個取り出してもとに戻す ことを8回繰り返すとき 7回以上白玉を取り出す確率は (1/2)^(1/2)+oc(1/2)^(1/2)=12(1+8)= 9 -= 0.035...... ◆黒玉を取り出す確率は 256 1-1/2=1/2 である。 これは 0.05 より小さいから, [2] の仮説は誤りであると考え られ, [1] は正しいと判断できる。 したがって、箱の中の白玉は黒玉より多いと判断してよい。 inf条件が「8回繰り返したところ, 6回白玉が出た」 であるなら、6回以上白玉を取り出す確率は 37 *c*()*()*+*c*(+) (+)*+.ca(+) (+)-(+8+28)=-0.14 =0.144...... 256 +8C7 259 これは 0.05 より大きいから、白玉は黒玉より多いと判断できない。 [2]の仮説は棄却されない。 なお、白玉を取り出す回数をXとすると, [1] の主張が正しい, つまり、白玉は黒玉より多いと 判断できるための範囲は、例題の結果と合わせて考えると,X≧7 である。 PRACTICE 1570 AとBがあるゲームを10回行ったところ,Aが7回勝った。この結果から,AはB して考察せよ。 ただし, ゲームに引き分けはないものとする。 より強いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし

解決済み 回答数: 1
数学 高校生

(2)と(3)で写真の丸で囲んである箇所のように場合分けする理由をおしえてください。

例 題 51 次の極限値を求めよ. sinx A limxsin X 1 2 lim X イタ 考え方 lim sin x 10 -=1-との違いに注意する. (3) limxsin x → 0 1 x であることに注意する。 lim (2),(3)それぞれ,このままでは直接求めることはできない。 このようなときは, (1)x→∞ではあるが、sin 12に着目すると10 うちの原理 (113) を利用する。そのとき,(2)と(3)で考えるxの他の はさ が異なることに注意する. 180 180 解答 (1)=t とおくと, x→∞のとき,t→0 見 x 1 sint よって, limxsin- =lim -=1 X 「 (2)-1≦sinx≦1より 1 sin x >0のとき ...① A x Xx cos x) 2 考えてよい.ている。 x+∞より,x0 と 辺々を x(>0) で割る。 x11 ここで, lim(-1) = lim1=0 x x xxx よって、①とはさみうちの原理より, lim Sinx -=0 ラジ x-x x 答える。 (3) -1≤sin≤1. x x>0のとき AOのとき (3) ここで, x+0 1 180 Onie S mil- |x≦xin─① x sin xxsin-x x lim(-x)=limx=0 x +0 ② lim.x= lim(x)=0niety x-0 080 したがって, ①,②とはさみうちの原理より, +0) nie 'di 1 limxsin- lim x sin x+0 limxsin=0 よって、 * → 0 in sin s 180 x→0より,x +0 と x→0の場合を考える. 0ssin 1/11とし えてもよい. sin x200 場ができる limf(x)=α x → a =0 x *--0 x 1 nie S x mil- ( = (同じ式) Onia lim f(x) xa+0 として考 = limf(x) = a x-a-0

解決済み 回答数: 1