学年

教科

質問の種類

数学 高校生

(3)、最初に 第n群のn個の分数の和が n って求めてるんだから、 最後の赤線のところは +20(第40群の個数が20だから)じゃなぜダメなんですか? それなら最初に解説の1行目で求めてるnは何のためなんですか?🙇‍♂️

386 重要 例 24 群数列の応用 1 1 33 3' 4' 135 3 1 3 5 7 1 4'4'4'5 (1)は第何項か ...... 0000 について (2)この数列の第 800 項を求めよ、 ③ この数列の初項から第800項までの和を求めよ。 8 CHART & SOLUTION 群数列の応用 ① 数列の規則性を見つけ、区切りを入れる ②第k群の最初の項や項数に注目 日本と 分母が変わるところで区切りを入れて群数列として考える。 (1), (2) は、 まず第何群に含ま れるかを考える。 (2)では,第800項が第n群に含まれるとして次のように不等式を立てる。 群 第1群 第2群 第3群 [個数 1個 2個 3個 第 (n-1)群第n群 (n-1)個 個 第800項はここに含まれる → ・第(n-1)群の末頃までの項数 <800≦ 第n群の末頃までの項数 (3)は,まず第n群のn個の分数の和を求める。 解答 (3分) 11 3 1 3 5 1 3 5 7 1 のように群に分ける。 (1)は第8群の3番目の項である。 第群の番目の項は 2m-1 n ① ←①でn=8, 2m-l=5 k-1 k+3=1/2・7・8+3=31 であるから 第31項 n-1 k=1 k=1 kは第7群までの項数 (2)第800項が第n群に含まれるとすると <800 第n群までの項数は よって (n-1)n<1600≦n(n+1) k=1 Zk k=1 39・40<1600≦40・41 から,これを満たす自然数nはn=401600=40°から判断。 1800-2k=800- 0-139-4020 であるから k=1 (3)第n群のn個の分数の和はΣ 39 40 n 2k-1' =- 1 n n ゆえに、求める和は Σk+ 3 5 139 + + k=1 40 ・+ 40 40 40 = 2 -39.40 + 11 402 • RACTICE 24 1 ・20(1+39)=790 の不等式を解くので はなく見当をつける。 ←①でn=40,m=20 k=1 (2k-1) =2.n(n+1)-n=n' 1から始まるn個の 数の和は。 これは覚 便利である。 C

解決済み 回答数: 1
数学 高校生

数学1Aです! (タ)の求め方がわかりません。図の書き方が分からず悩んでいます。特に蛍光ペンのところがわからないです…どなたかよろしくお願いします🙇‍♀️

数学Ⅰ (2)太郎さんの住んでいる街にはK電鉄のA 駅, B 駅, C駅があり, A駅とB駅の 間の線路はまっすぐである。 「STATION A 駅 3駅の位置関係は A駅とB駅の間の直線距離が13km 駅 数学Ⅰ (i) 太郎さんはスマートフォンを持って電車に乗り, A駅からB駅まで移動した。 出発時にアプリに表示されていたのはA駅のみであったが, 出発からちょうど 分後にアプリに ソ ソ の解答群 STATION 10000 +++ B 駅 A駅とB駅の2駅のみが表示された ① A駅とC駅の2駅のみが表示された ② A駅とB駅とC駅の3駅が表示された (i) 1年後にC駅が移転し、 移転後の3駅の位置関係は B駅とC駅の間の直線距離が 5km C駅とA駅の間の直線距離が12km である。 また, 近隣に他の駅はない。 太郎さんのスマートフォンには最寄り駅が表示されるアプリが入っている。 ただ し,最寄り駅とは,スマートフォンからの距離が最も近い駅のことである。 そのア プリでは, 最寄り駅が複数ある場合はすべての駅が同時に表示される仕様になって いる。 以下では,駅および太郎さんがスマートフォンを持って乗っている電車は同じ平 面上の点とみなす。 また, A駅からB駅まで運行する電車はA駅とB駅を結ぶ線分上を動くものと し, その速度は加速・減速を無視し, つねに時速78km であるとする。 A駅とB駅の間の直線距離が13km B駅とC駅の間の直線距離が 5km C駅とA駅の間の直線距離が10km となった。 C駅の移転後に, 太郎さんはスマートフォンを持って電車に乗り, A駅からB 駅まで移動した。 このとき, アプリに複数の駅が最初に表示されるのは,出発か らおよそ タ 後である。 その後、 再び複数の駅が表示されるのは,B駅に到 着するおよそ チ 前である。 タ の解答群 3分46秒 3分56秒 ② 4分6秒 ③ 4分16秒 C駅 12 km 5km チ の解答群 AR 13km B 駅 ⑩ 2分40秒 ① 2分55秒 ②3分10秒 ③3分25秒 (数学Ⅰ第2問は次ページに続く。) 31

回答募集中 回答数: 0