数学
高校生
解決済み

(3)、最初に 第n群のn個の分数の和が n って求めてるんだから、
最後の赤線のところは +20(第40群の個数が20だから)じゃなぜダメなんですか?
それなら最初に解説の1行目で求めてるnは何のためなんですか?🙇‍♂️

386 重要 例 24 群数列の応用 1 1 33 3' 4' 135 3 1 3 5 7 1 4'4'4'5 (1)は第何項か ...... 0000 について (2)この数列の第 800 項を求めよ、 ③ この数列の初項から第800項までの和を求めよ。 8 CHART & SOLUTION 群数列の応用 ① 数列の規則性を見つけ、区切りを入れる ②第k群の最初の項や項数に注目 日本と 分母が変わるところで区切りを入れて群数列として考える。 (1), (2) は、 まず第何群に含ま れるかを考える。 (2)では,第800項が第n群に含まれるとして次のように不等式を立てる。 群 第1群 第2群 第3群 [個数 1個 2個 3個 第 (n-1)群第n群 (n-1)個 個 第800項はここに含まれる → ・第(n-1)群の末頃までの項数 <800≦ 第n群の末頃までの項数 (3)は,まず第n群のn個の分数の和を求める。 解答 (3分) 11 3 1 3 5 1 3 5 7 1 のように群に分ける。 (1)は第8群の3番目の項である。 第群の番目の項は 2m-1 n ① ←①でn=8, 2m-l=5 k-1 k+3=1/2・7・8+3=31 であるから 第31項 n-1 k=1 k=1 kは第7群までの項数 (2)第800項が第n群に含まれるとすると <800 第n群までの項数は よって (n-1)n<1600≦n(n+1) k=1 Zk k=1 39・40<1600≦40・41 から,これを満たす自然数nはn=401600=40°から判断。 1800-2k=800- 0-139-4020 であるから k=1 (3)第n群のn個の分数の和はΣ 39 40 n 2k-1' =- 1 n n ゆえに、求める和は Σk+ 3 5 139 + + k=1 40 ・+ 40 40 40 = 2 -39.40 + 11 402 • RACTICE 24 1 ・20(1+39)=790 の不等式を解くので はなく見当をつける。 ←①でn=40,m=20 k=1 (2k-1) =2.n(n+1)-n=n' 1から始まるn個の 数の和は。 これは覚 便利である。 C

回答

✨ ベストアンサー ✨

解説の1行目のnは、39(k=1)Σkの部分で使ってるよ
1+2+3+…39をΣで表してるだけ

それに対して、第40群は本来は79/40まで続くはずなんだけど、800項でブチって切られちゃってるよね
つまり40群はパーフェクトな群じゃ無いから、解説の1行目の理論「第n群のn個の分数の和が n 」は成り立たない
だから40群だけは別個で和を考えないといけない
で、等差数列の和って
1/2×(項数)×{(初項)+(末項)}でしょ?最後の式は、末項が39だから39を入れるよ〜

ありがとうございます!

れお

いえいえ!

この回答にコメントする
疑問は解決しましたか?