学年

教科

質問の種類

数学 高校生

基本例題の方では、互いに素でない⇔素数を公約数にもつ、と書かれてあるのですが、Exercisesの方の問題では、公約数gが素数と書かれてありません。なぜなのか教えて欲しいです🙏

530 |基本例題 121 互いに素に関する証明問題 (2) 000 自然数 α, bに対して, aとbが互いに素ならば, a + b と abは互いに素である。 ことを証明せよ。 p.525 基本事項 2 重要 121 a+b abの最大公約数が1となることを直接示そうとしても見通しが立たない。 そこで,背理法(間接証明法)を利用する。 →a+b と ab が互いに素でない, すなわち, a+bとαbはある素数」を公約数 にもつ,と仮定して矛盾を導く。 なお、次の素数の性質も利用する。 ただし,m, n は整数である。 mn が素数 』 の倍数であるとき,またはnはかの倍数である。 1 最大公約数が1を導く CHART 互いに素であることの証明 背理法 (間接証明法)の利用 a+b と ab が互いに素でない, すなわち, a + b と αbは 解答ある素数を公約数にもつと仮定すると とnが互いに素で ない a+b=pk D, ab=pl ② と表される。 ただし, k, lは自然数である。 ...... mnが素数を 公約数にもつ ② から, α または は の倍数である。 α a=pmとなる自然数がある。 の倍数であるとき, = 1 このとき,①から,b=pk-a=pk-pm=p(k-m) となk-mは整数。 りもの倍数である。 (I+\)8=8+18=8+ (I+s)=( これはaとbが互いに素であることに矛盾している。(+0) Ict bがpの倍数であるときも,同様にしてαはの倍数であa=pk-b り,aとbが互いに素であることに矛盾する。 =pk-m') したがって, a+bとabは互いに素である。)=+ ( ' は整数) 参考 前ページの基本例題120 (2) の結果 「連続する2つの自然数は互いに素である」は,整数 の問題を解くのに利用できることがある。 興味深い例を1つあげておこう。 問題 素数は無限個存在することを証明せよ。 [証明] 2以上の自然数とする。 +1は互いに素であるから, n=n (n+1) は異な る素因数を2個以上もつ。 同様にして, n=n(n+1)=ni(n+1) (n2+1) は異なる素因数を3個以上もつ。 「この操作は無限に続けることができるから,素数は無限個存在する 素数が無限個存在す

解決済み 回答数: 1
数学 高校生

(3)について質問です。 この不等式はどの問いの何を使えば出来上がるのか教えていただきたいです🙇‍♂️

重要 例題 30 漸化式と極限 (5) ・・・ はさみうちの原理 平 づ <a<3を証明せよ。 26 (3) 数列{an} の極限値を求めよ。 00000 数列{an}が0 <a<3, an+1=1+1+αn (n=1, 2, 3, ......) を満たすとき [類 神戸大] /13-1/12 (3-0)を証明せよ。 /p.34 基本事項 3. 基本 21 指針 (1) すべての自然数nについての成立を示す 数学的帰納法の利用。 (2) (1) の結果, すなわち an >0, 3-ax>0であることを利用。 (3) 漸化式を変形して,一般項 αをnの式で表すのは難しい。 そこで,(2)で示した 不等式を利用し, はさみうちの原理を使って数列{3-αn の極限を求める。 はさみうちの原理 すべてのnについて pn San≦gn のとき limplimgn=αならば liman=a 710 818 2章 ③数列の極限 なお, p.54, 55 の補足事項も参照。 CHART 求めにくい極限 不等式利用ではさみうち (1) 0<an<3 解答 ① とする。 811 Famil [1] n=1のとき, 与えられた条件から①は成り立つ。 [2] n=kのとき, ①が成り立つと仮定すると 0<a<3 =k+1のときを考えると,0<a<3であるから ak+1=1+√1+ak >2> 0 +1+3=3 したがって よって, n=k+1のときにも①は成り立つ。 0<ak+1/30 数学的帰納法による。 <0<a<3 <<ak から√1+α > 1 <a<3から1+αk <2 [1], [2] から, すべての自然数nについて ① は成り立つ。 < (2)3-αn+1=2-√1+an 3-an (3-an) 2+√1+an (3)(1),(2) から, n≧2のとき liml n10 0<3-an()(3-as) (1/2) (3-a1)=0であるか 3 lim(3-an)=0 liman=3 したがって 200 <3-a>0であり,an>0 から 2+√1+α >3 n≧2 のとき,(2)から 3-an< (3-an-1) (12/2)(3 an- <(1/2)(3-4) モン 練習 α=2, n≧2のときα an-1 1-12 を満たす数列{an) について 30

解決済み 回答数: 2
数学 高校生

【確率統計】 (シ)(ス)が分からないです。XiはわかるのですがXが何を示しているのかがわからないです。

選択問題) (配点 16) いずれか3問を選択し, 解答しなさい。 以下の問題を解答するにあたっては,必要に応じて19ページの正規分布表を用 いてもよい。 太郎さんと花子さんには, 共通で好きなお菓子がある。 そのお菓子は1個ずつ包 装された5個が1つの箱に入って売られている。 そのお菓子にはある割合で特別な 味付けのものが混じっている。 特別な味付けのお菓子は無作為に箱に入れられ, 1 つの箱に1個もないこともあれば2個以上のときもある。特別な味付けのお菓子の 割合は1/3の割合といわれているが,2人は常々もっと少ない割合ではないかと感 じていた。そこで2人は,友達や家族の力も借りて特別な味付けのお菓子の個数の 情報を集め, 検討してみることにした。 2人は調査を始める前に,有意水準と棄却域について自分たちなりの考えをまと めておくことにした。 数学Ⅱ・数学B 数学 C 2人は,どの包装についても確率で特別な味付けのお菓子が,確率 1-Dで普 通のお菓子が入っているように 0 <<1である定数を定められると仮定して, =1であることを帰無仮説, カキ 1/3であることを対立仮説として有意水準5%の 両側検定で判定することにした。 2人は情報を集めた 80 箱分400 個のお菓子における特別な味付けのお菓子の個 数が70個であることを確かめた。 どの包装についても確率 1/3で特別な味付けのお 5 菓子が入っており,確率で普通のお菓子が入っていると仮定する。 包装1個ご とに1以上400以下の整数を1つずつ割り振り, 数えごとに確率変数 X を, 数 iが割り振られた包装1個が特別な味付けのお菓子だったら値 1, 普通のお菓子だ ったら値0をとる確率変数として定める。 さらに X=X1+X2+... + X 400 により確 率変数Xを定める。 X, X の期待値 E (Xi), E (X)についてE(X)= 80 コ サ (i=1, 2,…,400) であり E(X)=シス である。 また, Xi, X の分散 V (X), 96 太郎 模擬試験などで使われる偏差値は50+ 計算されるそうだよ。 花子: 正規分布表から標準正規分布における有意水準 5% の両側検定におけ る棄却域は- ア イウ 以下または ア イウ 以上だから, 一般の正規分布における有意水準 5% の両側検定における棄却域は, 偏差値で表現すればエオ カ以下または キク 以上と (個人の得点)-(平均点)×10で (標準偏差) セ V(X)について V(X)= 040円 (i=1, 2, ..., 400) であり V(X)=チッで ソタ ある。 400 を十分に大きい数とみてXの確率分布は期待値シス標準偏差 テ の正規分布で近似できる。 よって実際に特別な味付けのお菓子が400個中 70 個だ ったことから有意水準 5% の両側検定により ト 5 。 なるね。 30 4 69 6 太郎: 模擬試験について調べるときに受験者から無作為に1人選ぶとして, そ れなりに選ばれそうな範囲だね。 ト の解答群 400.3 花子 : 私たちはあまり強い表現は用いないことにして, 数値が棄却域に属する ときは 「仮定を疑わせる結果となった」, 棄却域に属さないときは 「仮 定を疑わせる結果とはならなかった」と述べることにしよう。 ⑩仮定を疑わせる結果となった ① 仮定を疑わせる結果とはならなかった 0.475 (数学Ⅱ・数学B 数学C第5間は次ページに続く。) 20.95 (数学Ⅱ・数学B 数学C第5間は次ページに続く。) 400 1,46×10+50 =-19,6+50 69.6 -16- <-17-

解決済み 回答数: 1