学年

教科

質問の種類

数学 高校生

数Ⅰの2次不等式の問題です。 「a>a^2のとき」を調べる理由を教えてください🙇🏻‍♀️

要 例題 103 文字係数の2次不等式の解 次のxについての不等式を解け。 ただし, は定数とする。 00000 基本 31.87,88 重要 105 x-(a+a)x+a³≤0 CHART & SOLUTION 係数に文字を含む2次不等式 2次方程式の解の大小関係に注意して場合分け 左辺は因数分解できて (x-a)(x-a2)≤0 <β のとき (xa)(x-B)M0axp ここではα,Bがともにの式で表されるから,ととの大小関係で場合が分かれる。 解答 不等式から x2_(a2+α)x+α≦o したがって (x-a)(x-a²)≤0 ● [1] a <α のとき a²-a>05 a(a-1)>0 よって a<0, 1<a このとき、 ①の解は a≤x≤a² 16 [2] a=α のとき a-a=0 から a(a-1)=0 a=0, 1 たすき掛けを利用すると ... ① 1 -a-a -a²-a2 1 a³ -(a²+a) よって α=0 のとき ① は x2≧0となり α=1のとき ①は (x-1)^≦0 となり x=1 大 & 02 (1-10)(1+1) 3章 11 2次不等式 αの値を① に代入。 (x-α)2 0 を満たす解 はx=α のみ。 0≦x≦0 は x = 0, 1≦x≦1 は x=1 を表すから,解は のとき a²≤x≤a a < 0, 1 <αのとき a≤x≤a² と書いてもよい。 (01)(x) a-a< 0 から 0 [3] a>α^ のとき a(a-1)<0 よって 0<a< 1 2 このとき ①の解は a² ≤x≤a 以上から 0<a<1 のとき a²≤x≤a α = 0 のとき x=0 0=x |a=1のとき x=1 a < 0, 1 <a のとき a≤x≤a² 土 515

解決済み 回答数: 1
1/351