学年

教科

質問の種類

物理 高校生

(1)について教えてください。 加速度を求める公式として2枚目の公式を習ったのですが答えは違う公式を使っています。2枚目の公式はいつ使う物ですか🙇‍♀️?

(基本例題 3等加速度直線運動 x軸上を一定の加速度で運動する物体が、 時刻 t=0sに原点Oを正の向きに12.0m/sの速度で 出発した。 その後, 物体はある地点で折り返し、 t=5.0sには負の向きに8.0m/sの速度になった。 (1) 物体の加速度の向きと大きさを求めよ。 t=0s 0 t=5.0s 12.0m/s 8.0m/s (2)物体が折り返す時刻と、このときの物体の位置(x座標) を求めよ。 (3)t=5.0sでの物体の位置(x座標)と,この時刻までに移動した距離を求めよ。 解答 (1) 加速度をα[m/s] とすると,v=vo+αt から, -8.0=12.0+α×5.0 よって, a=-4.0m/s² x軸の) 負の向きに 4.0m/s^ (2) 折り返す地点での速度は0m/sである。 折り返す時刻をt[s] とすると, = v +αt から, 4 [m/s] 12.0 0=12.0+(-4.0)xt よって, t=3.0s S₁ 3.0 5.0 0 このときの位置をx[m] とすると, x=vot+/12/12 から, Sa t(s) -8.0 x=12.0×3.0+ 1/2×(-4.0)×3.02=36-18=18m (3)4=5.0sでの位置をx'[m] とすると, x=vot+ 1/12から 時刻・・・ 3.0 s, 位置…18m x=12.0×5.0+1/2×(-4.0)×5.0°=60-50=10m 10 X 18 (2)の結果から, t=3.0s 以降は負の向きに移動するので、 t=5.0sまでに移動した距離 s 〔m〕は. 別解 右上のtグラフの面積S, 〔m) Sz[m] を用いて, s=Si+Sz=18+8.0=26m x'=S,-S=18-8.0=10m 途中で運動の向きが変わる 場合は、 s=18+ (18-10)=26m 位置・・・10m, 移動した距離...26m (移動した距離) 原点からの変位 運動の式)」を使うか

未解決 回答数: 1
数学 高校生

(2)は判別式と最初に書いてあるa>0の2つの条件のみで解くのはだめですか?g(-1)と軸>-1は必要ですか?

40 逆関数 (s)=var-2-1 (a>02) とするとき、次の問いに答えよ (1) y=f(x) の逆関数y=f(x) を求めよ.(s) ハー (2) 曲線 y=f(x) と曲線 C2:y=f-l(xc) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,C2の交点のx座標の差が2であるとき,αの値を求めよ。 (0>x) (x)\S 〈逆関数の求め方〉 精講 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し, xとyを入れかえればよい 〈逆関数のもつ性質> I. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは、直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,Iが ポイントになります。 解答 (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+10 より, 値域は y≧-1 ここで,両辺を2乗して ■大切!! ax-2=(y+1)2 . a x = 1/1 (4+1)² + 2/2 (y = −1) a よって、f(x)=1/2(x+1)+12/2(x-1) 【定義域と値域は入れ かわる a a 注 「定義域を求めよ」とはかいていないので,「x≧-1」は不要と思う 人もいるかもしれませんが,この値に対してyを決める規則が関数で ですから、xの範囲, すなわち, 定義域が 「すべての実数」 でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません . (2) y=f(x) y=f'(x)のグラフは,凹凸が異なり,かつ, 直線

解決済み 回答数: 1
化学 高校生

化学の酸化還元反応の問題です。H₂О₂は酸化剤として働くときと還元剤ではたらく場合があると思うのですが、下の問1 の(オ)、(カ)の問題を解くときにどうやって考えて解けばいいのかわからないので教えてほしいです。

【演習問題】 6-2 酸化還元反応 次の(A), (B)の文章を読み, 下記の問1~ 問5に答えよ。 (A)同一の物質が酸化剤としても,還元剤としても作用する場合がある。過酸化水素や二酸 化硫黄はその例である。 たとえば、過酸化水素は硫酸酸性水溶液中で過マンガン酸カリウムと反応して酸素を (1) 発生する。このときマンガンの酸化数はアからイに変化し, 過酸化水素中の酸 I に変化する。 この反応では, 過酸化水素はオ 素原子の酸化数はウから 剤として働いている また、 過酸化水素は硫酸酸性水溶液中でヨウ化カリウムと反応してヨウ素を遊離させ (2) る。この反応では,過酸化水素はカ剤として働いている 硫酸酸性水溶液中での過マンガン酸カリウムとシュウ酸の反応は,次の化学反応式で (3) (B) 表される。 あ + 3H2SO4 + い → K2SO4 + う + 8H2O + え 0.100mol/Lのシュウ酸水溶液 20.0mL と過不足なく反応するのに過マンガン酸カリ ウム水溶液 10.0mLを必要とした。 この過マンガン酸カリウム水溶液の濃度はx [mol/L] である。 問1 文(A)の空欄 ア ~ カに最も適する語句, または数値を記入せよ。 問2 文(A)において下線部(1), (2) を化学反応式で表せ。 問3 文(B)の下線部 (3) の反応の化学反応式について空欄 あ 記入せよ。 その際, 必要な場合には係数を付けて答えよ。 ~ えに適する化学式を 問4 文(B)において過マンガン酸カリウム水溶液の濃度x [mol/L] はいくらか, 有効数字 3桁で求めよ。 問5 文(B)において,コニカルビーカーにシュウ酸水溶液と硫酸をとり、ビュレットから過 マンガン酸カリウム水溶液を滴下したとき, 滴定の終点では,溶液の色はどのように変 化するか。 40字以内で述べよ。 <-107->

解決済み 回答数: 1
生物 高校生

問題文から何を言っているのか全くわからないです。問題を解く時の考え方など教えて欲しいです🙇‍♀️🙇‍♀️

30 30 発展 25 次の文章を読み、 以下の問いに答えよ。 細胞分画法は,細胞小器官の大きさや重さ の違いを利用し、細胞小器官やそれ以外の成 分を分離する方法である。 ある動物細胞から, 次のような細胞分画法(図1)で, 細胞小器官 を分離した。 細胞破砕液 遠心分離 1000g 上澄みal 遠心分離 20000g 上澄み可 沈殿A 遠心分離 150000g 上澄みc 沈殿B まず 4℃の環境のもと, 適切な濃度の スクロース溶液中で細胞をすりつぶし, 細胞 破砕液をつくった。 次に,細胞破砕液を試験 管に入れて, 1000g(gは重力を基準とした遠 心力の大きさを表す) で10分間遠心分離し、 沈殿 A と上澄みa を得た。 これらを光学顕 微鏡で観察したところ, 沈殿Aには核と未 破砕の細胞が含まれていたが,上澄みa 表1 各沈殿・上澄み中の酵素Eの活性(U) 沈殿C 図1 細胞分画法 沈殿 A 134 U 上澄み a XU 沈殿 B 沈殿 C 463 U 6U 上澄み b 上澄み YU 25 U には,これらは含まれていなかった。 上 澄みをすべて新しい試験管に移し、 20000g 20分間遠心分離し, 沈殿B と上澄み bに分けた。 さらに, 上澄み b をすべて新しい試験管に移し, 150000g で180分間遠心分離し、 沈殿Cと上澄み に分けた。次に,各沈殿と各上澄みについて 呼吸に関する細胞小器官に存在する 酵素の活性を測定し,表1に示す結果を得た。 なお表中のU(ユニット)は酵素 E

回答募集中 回答数: 0
地学 高校生

地学基礎 12(5)で質問です 核の密度を求めています。問題は写真1枚目で、(4)でD,d,R,rが何なのかが書かれています。 数字は分かっているので代入していったのですが、解説(写真2枚目)赤線のように分母と分子に10の5乗がかけられていました。 自分でやったら写真3枚目... 続きを読む

一 編 は高度 41 して,次の問いに答えよ。 ただし, 計算せよ。 (1)地球の円周は何kmか。 有効数字2桁で求めよ。 (2)2地点X,Yにおける北極星の高度は,それぞれの地 点の何と等しいか。 (3)地球の円周を1とおき, 地点 X,Yの間の距離をd, 地点X,Yの緯度の差を0(度) としたとき,どのよう な関係式ができるか。 X Y 北極 赤道面 (4) 地点 X, Yの間の距離は何kmとなるか。 有効数字2 桁で求めよ。 南極 例題 1,2 計算 12 地球内部の構造 次の問いに答えよ。 地球はおおよその半径6.4 × 10°km, 平均密度 5.5g/cmの球体であるが,実際の地球 の内部は成層的な密度構造をもっている。地球内部の表層は平均密度 2.7g/cm の ア があり,その厚さは地球半径に比べて非常に小さいため無視できるとみなす。 よって,地球はおおよその厚さ 2.9 × 10km, 平均密度 4.5g/cmのイとその内側 にある核の2つから成りたっていると考えると, (a 核の密度を求めることができる。 (1) モホロビチッチ不連続面直下の密度を,次の①~④の中から選べ。 ①2.3g/cm ②2.7g/cm ③ 3.3g/cm3 ④4.0g/cm (2) 文中の ア とに適切な語を入れよ。 (3)地球内部の構成物質を岩石と金属に区分すると、 その境界の深度は何kmであるか。 (4) 下線部(a)に関連して,地球の平均密度をD, マントルの平均密度をd, 地球の半径を R, 核の半径をr とすると, 地球の質量はD× R3 と表せる。 マントルの体積と 核の密度はどのように表せるか。 (5) 核の密度は何 g/cm か, 有効数字2桁で求めよ。 3 ただし,2.9' = 24, 3.5° = 43, 6.4° = 260のうち必要なものを用いよ。 [ 名古屋大 改 〕

解決済み 回答数: 1
1/173