学年

教科

質問の種類

地学 高校生

(1)で、答えは正断層なのですが、「南北方向に伸びる断層」というのが分かりません。正断層は、東西方向に伸びて上下にずれるという認識だったのですが、どうしたら南北方向にも伸びるのでしょうか…回答よろしくお願いします!

32.収束境界と断層プレートの沈み込みに伴う諸現象について,次の各問いに答えよ。 図は,プレートの収束境界の概念図で、上図は断 西 面図, 下図は地表面での領域の分布を示している。 (1) 図の領域Aでは, 海洋プレートの沈み込みに伴 い, 海洋プレートの上部が東西方向に引きのばさ れるため, 地殻が破壊されて断層が形成される。 領域Aで生じる南北方向にのびる断層として最も 適当なものを、次の①~③ から1つ選べ。 天領域 A 海溝 -海面- 地殻 ・地殻 大陸プレート 「マントル 海洋プレート・ くちマントルー ① 正断層 ② 逆断層 ③ 横ずれ断層 (2) 図の領域Bは, プレートの運動に伴って東西方 向に短縮し,南北方向には短縮や伸張をしない状 況にある。 領域Bで生じる断層として最も適当な ものを,次の①~③ から1つ選べ。 ①正断層 ②逆断層 ③横ずれ断層 (3) 図の領域Cでは, 北西から南東にのびる左横ず れ断層がみられる。 領域Cの状況を表す説明とし て最も適当なものを、次の① ~ ④ から1つ選べ。 北 海岸 海溝 北東 南西方向に伸張する状況に 東方向に短縮し、 S 北 千 領域B 領域 A 領域C

回答募集中 回答数: 0
数学 高校生

42番において、絶対値rのときと普通のrのときの違いを教えて頂きたいです。 どのような時に絶対値記号がつくのか教えてください🙇‍♀️

1+ 3 1+0 =lim =-1 0-1 43 42 (1) 0 <r<1のとき (1) EA limr" = 0, limrn+1=0 (にし、 (8- 72+1 0 よって lim = 0 001 mn+2 0+2 七 r=1のとき limr" =1, limrn+1 =1 7108 E +1 1 よって lim = ny" +2 1+2 13 (2) -1, 3' 16 64 9 27 (3)*10, -100,1000, -10000, ④4 8, -4√2,4, 2√2, 41 次の極限値を求めよ。 2"+3n (1)* lim 5" (2) lim 7"-3 4n+1 11-00 7"+5 教 p.30問 6 まとめ 2 (3) lim no4n+2n (4)* lim (-6)"+4" 1-∞ 4"-(-6)" 次の極限を調べよ。 r>1のとき 01 <1であるから 0-3--1- (1)* lim mn+1 non +2 教 p.30問 ただし, r>0 (2) lim 2rn-1 5/16 non +1 ただし, r≠-1 n 母が正である lim = 0 D よって 2n+1 mn+1 lim 11800 mm +2 = lim 11-001+2 mn mn = lim 1118 r n 1+2.1 (2) |r| <1 のとき limy" = 0 よって "alm1+2.0 "0 mil +(-) 2-12-0-1-1 nwn+1 0+1 ("(a)+"a)mil lim =1のとき vamil limr" =1 n→∞ mil よって lim 2r"-1 nooyn+1 2.1-1 = 1+1 12 r =r 2118 (3)* lim 18 5"+1 +7 +1 +97-1 32n+5"+7" (4) lim 4" -3" 2"3" 143 次の漸化式で定められる数列{az}の極限を調べよ。 2 3 + (1) a1= 2, An+1 = - an+5 (n=1, 2, 3, ...) (2)* a1= 5, an+1=2an-2 (n = 1, 2, 3, ..) (3)*a1 = 4,2an+1+an=3 (n = 1, 2, 3, ···) 44 次の極限を調べよ。 (1) lim{6"+(-5)"} B (2)* lim(3"+4"-5") 教 p.31 匹 まとめ 2 41 2 21 45 第n項が次の式で表される数列が収束するような実数xの値の範囲を求め (1)* (x2-x-1)" △ 46 次の極限を調べよ。 (1)*lim no 22(n+1)-1 man+3 n 3x (2)* (3) (2x-1)" A 2n +9 (2) lim N18 2n+1-32n 2食

解決済み 回答数: 1
数学 高校生

オレンジマーカーの部分がわからないです。教えてください🙇

基本題 29 漸化式と極限 (4)・・・ 連立形 00000 P1(1, 1), Xn+1= 1 4 4 -xn+ yn, yn+1= 5 3 4 5 =2xn+1/yn (n=1,2)を満たす平 面上の点列 Pn(xn, yn) がある。 点列 P1, P2, くことを証明せよ。 はある定点に限りなく近づ 指針 点列 P1, P2, 解答 [類 信州大〕 p.36 まとめ, 基本 26 がある定点に限りなく近づくことを示すには, lim xn, limy がど もに収束することをいえばよい。 そのためには,2つの数列{x}, {yn} の漸化式から, Xn, yn を求める。 ここでは,まず,2つの漸化式の和をとってみるとよい。 (一般項を求める一般的な方法については、解答の後の注意 のようになる。) Xa+1 = 1/4 x + 1/13/ -xn+ ①+②から P1(11) から x+y=2 3 xn+ yn (2) x=1,y=1 5 Yn ①, yn+1= Xn+1+yn+1=xn+yn よってxn+yn=Xn-1+yn-1=......=x+y=2 ゆえに yn=2-Xn 11 8 1 これを① に代入して整理すると Xn+1=- xn+ xn+1=- 20 5 32 11 32 特性方程式 変形すると Xn+1 Xn 31 20 31 11 8 Q=- a+ の解は 20 5 32 1 また X1- == 31 1+0=6 32 31 a= 31 32 32 ゆえに xn- 31 1 数列 xn- 20 31 32 1 よって limxn=lim 7118 31 31 また n→∞ n→∞ limyn=lim(2-x)=2- 2)=32 11 \n-1 31' 20 11. A-10 11 公比 の等 20 31 比数列。 32 30 31 31 y=2x から。 したがって, 点列 P1, P2, 32 30 ***** 31 31 は定点 (2220) に限りなく近づく。 注意 一般に,x=a, yi=b, xn=pxn+gyn, yn+1=rxn+syn (pqrs≠0) で定められる数列 {x},{yn} の一般項を求めるには,次の方法がある。 方法1 X+1+αyn+1=β(x+αyn) として α,βの値を定め、等比数列{x,+yn} を利 用する。 方法2 yn を消去して, 数列{x} の隣接3項間の漸化式に帰着させる。 すなわち, 1 xn+1=pxn+qyn から yn=Xn+1 P -Xn よって yn+1= Xn+21 Xn+1 q q q これらを yn+1=rxn+syn に代入する。

解決済み 回答数: 1
1/129