学年

教科

質問の種類

物理 高校生

(3)はどうして赤い字の考え方だとダメなんですか?

Ⅰ 次の文章の空欄にあてはまる数式, 図, または文章を解答群の中から選び, マーク 解答用紙の所定の場所にマークしなさい。(34点) y 0 10 m x 図1 水平方向にx軸,鉛直上向きに軸をとる。このxy面内を,大きさが無視できる [m] r 小球が運動する。 小球の質量をm[kg] とし,重力加速度の大きさをg[m/s] とする。 ひもの一端が図1の原点0に固定されていて, ひもにつながった小球が,原点0か 一定の距離 [m] を保って円運動をしている。 ひもに太さや重さはなく,空気抵抗 はないものとする。原点からみた小球の位置の方向と鉛直下向きの方向のなす角 を 0 [rad] とする。小球の速さは9によって変化し,(0) [m/s] とおく。特に, 0 = 0 における小球の速さ(0) をCMと書くことにする。小球は0の増加する方向に運動 している。 力学的エネルギー保存の法則を使うと, (1) という関係が成り立つ。 小球には重力と, ひもから受ける張力 T がはたらいている。 それらの合力のうち、 ひもに沿った方向の成分は, 向心力でなければならない。 向心力はm, v(0)に より与えられるが,その関係式は円運動が等速でなくても成り立つ。この事実を使う と、張力はT= (2) [N] と表される。 ひもがたるまずに円運動を続けるには,

解決済み 回答数: 1
物理 高校生

問5の問題がわかりません。 解説のマーカーで線を引いた部分について、なぜ、1/4Tとなったのですか?

体1. 方向 問4 積 12 ③ Point 運動量の変化と力積の関係 物体の運動量の変化は、 積と等しい。 mv2mvy=FAt その間に物体が受けたか m質量 : 変化前の速度, V2 変化後の速度 Fat: 受けた力積 Point! 衝突での作用・反作用の法則 作用・反作用の法則より直線上の小球入 の衝突で小球 A. Bが及ぼし合う力は大きさが等 しく向きが逆である。 そのため, 衝突で小球が小 球Bから受けた力積をIとすると, 小球Bが小球A から受けた力積はと表される。 小球Aと小球Bが衝突したとき, 小球Bが小球 から受けた力積は, 運動量の変化と力積の関係から、 4mv-04mo (右向きに大きさ4mv) である。 作用・ 反作用の法則より 小球 A が小球Bから受けた力 は、4m (左向きに大きさ4mv)である。 問5 単振動の振幅,周期 13 8 Point! 単振動の振幅 小球Bの振動の中心はばねが自然の長さのときの 小球Bの位置(力のつり合いの位置, 小球 A と衝突 した位置)で,単振動の一方の端は小球Bが最もばね を押し縮めた (壁面に最も近づいた)ときの位置であ る。 そして、振動の中心から端までの距離が振幅で ある。 求める距離は,力学的エネルギー保存の法則を用 いると求めることができる。 1/2 =1/2x2 法則を用いると, 1.4mv²= よって, X=20√ 第3問 A 問1 動の周期をT とすると, T=2 衝突直後から小球Bは単振動を始める。この単振 二つの のスリッ 明暗の縞 4m m =4π k 問2 千 小球Bはばねが自然の長さ (振動の中心) の位置か ら単振動を始める。 単振動を始めてからはじめて小球 かばねを最も押し縮めたときまでの時間は 1/17 表されるので, 求める時間は, 1/27=1/2x47 m m =π √ k +α! 単振動の周期 小球Bの単振動の周期を導いてみよう。 ばねが自 然の長さからxだけ縮んでいるとき,水平右向きを 正とすると、小球Bにはたらく力はxと表され る。この力は復元力であり、小球Bの加速度をαと すると、運動方程式は4ma=kxとなるので. a=-- k x と表される。 4m また、単振動の角振動数を とすると a=-x と表されるので、上式と比較して k 小球Bの単振動の周期をTとすると 4m √ k 222 = 4π T= @ +α! 単振動の振幅 m k 単振動の角振動数を とすると, 小球Bが振動の 中心を通過するときの速さと振幅の関係は. k Point 経経反合 ※反 レー S1, S スリ リッ リッ この 光 Point! ばねによる単振動の周期 ばねにつながれた物体の単振動の周期は T=2π m √ k T: 周期, m: 質量 k : ばね定数 衝突直後から小球Bがはじめて壁面に最も近づい たときまでに移動した距離は,小球Bがばねを最も 押し縮めたときのばねの自然の長さからの縮みと考え ればよい。その距離をXとして、衝突直後に小球B が水平右向きに速さ”で動き始めたときとばねを も押し縮めたときについて力学的エネルギー保存の v = Aw= A√ Am (上の+α!のの式を代入) m よって, A=20 √ k (第二

回答募集中 回答数: 0
物理 高校生

物理基礎の力学的エネルギーの質問です。 私は写真の緑の文字のように考えました。ですが、答えは違い、解説に途中式も無いので、なぜこのような答えになるかがわかりません。 そのため途中式と、なぜ私の答えが違うのかもできたら教えて下さると嬉しいです!

56 〈張力のする仕事と力学的エネルギーの保存> 図のように,長さ[m] の糸の先に質量 m[kg]のおもりをつける。点○の真下 / [m]の 点Cには, くぎが打ってある。 おもりを点Cと同じ高さの点Aまで 持ち上げて静かにはなすと, おもりは点Bを通過したあと,点Cを 中心とした円弧を描いて最高点Dまで到達した。 重力加速度の大き さをg 〔m/s2〕 として, 次の問いに答えよ。 (1) 点Aから点Bにかけて糸の張力がする仕事を求めよ。 ~正答 0] (2)点Bでのおもりの速さを求めよ。 Ngl (m/s) gl(m/s) ●(3) 最高点Dの高さを求めよ。ただし、重力による位置エネルギーの基準面の高さを点Bとする。 「水と器がた 答 2 m (4)点の真下! (4)点○の真下/ [m]のところへくぎの位置を変えたとき,最高点Dの高さを求めよ。ただし,重 力による位置エネルギーの基準面の高さを点Bとする。」 Bの速さ=V 1Dの高さこん mgo+/m/g=mgh+/mo mg (1 - 1 ) + 1 mo² = mg0 + 1 mr² | mg0+1 m² 3419 = mgh + mo 1mv² = 1/4 1mg √ = 41mg mgh=lg んこし 20 2章 エネルギー

解決済み 回答数: 1
物理 高校生

解説は載っていますが、(1)でなぜ 1/2×9.8×0.020^2=0.010×⒐8×h という式になるのかよくわかりません。 1/2×k×x^2 と m×g×h が等しいということですか? この式で左辺と右辺がなぜイコールなのか教えてください。🙏

基本例題19 弾性力による運動 なめらかな水平面 AB と曲面 BC が続いてい る。Aにばね定数 9.8N/m のばねをつけ, その他 端に質量 0.010kgの小球を置き, 0.020m 縮めて はなす。 重力加速度の大きさを9.8m/s2 とする。 www B 基本問題 138. 146 C 0.40m (1) 小球は, ばねが自然の長さのときにばねからはなれる。 その後, 小球は,水平面 ABから何mの高さまで上がるか。 (2) 水平面 AB からCまでの高さは0.40m である。 ばねを0.10m縮めてはなすと, 小 球はCから飛び出した。 このときの小球の速さはいくらか。 指針 垂直抗力は常に移動の向きと垂直で あり仕事をしない。 小球は弾性力と重力のみから 仕事をされ, その力学的エネルギーは保存される。 (1)では, ばねを縮めたときの点と曲面上の最高点, (2)では, ばねを縮めたときの点と点Cとで,それ ぞれ力学的エネルギー保存の法則の式を立てる。 ■解説 (1) 重力による位置エネルギーの 高さの基準を水平面 AB とすると, ばねを縮め たときの点で,小球の力学的エネルギーは, 弾 性力による位置エネルギーのみである。 曲面 BC上の最高点で、速さは0であり,力学的エネ ルギーは重力による位置エネルギーのみである。 最高点の高さをん 〔m〕 とすると, x9.8×0.0202=0.010×9.8×h h=2.0×10m (2) 飛び出す速さを [m/s] とすると,点Cにお いて,小球の力学的エネルギーは,運動エネル ギーと重力による位置エネルギーの和であり、 2 ×9.8×0.10 x0.010×2 +0.010×9.8×0.40 v2=1.96=1.42 v=1.4m/s

解決済み 回答数: 2
1/32