学年

教科

質問の種類

数学 高校生

右ページの面積図で、 事象Bの形が写真のようになっている所が 分かりません。 事後の確率の 計算方法をあまり理解出来ていないので、 追加質問をするかもしれません。 ご回答よろしくお願いします(*.ˬ.)"

第5章 第5章 確率 事後の確率 次のような問題を考えてみましょう. 例題 箱の中に 10 本のくじがあり,その中の3本が当たりである.まず太郎 くんが1本くじを引き,そのくじは元には戻さないで,次に次郎くんがく じを引く、次郎くんが当たりくじを引いたという条件のもとで,太郎くん が当たりくじを引いていた確率を求めよ. 思わず二度見,ならぬ二度読みしてしまう問題ですね、この問題は,何かが 「ちょっと変」なのです. 例えば,「太郎くんが当たりくじを引いたという条件のもとで」次郎くんが 当たりくじを引く確率というのであれば理解できます. 太郎くんが当たり じを引いた段階で, 箱の中には9本中2本の当たりくじがあるのですから,こ 2 こから次郎くんがくじを引いて当たる確率は となります. これは問題あり 9 ませんね. ところがこの問題が聞いているのは,「次郎くんが当たりくじを引いたと いう条件のもとで」 太郎くんが当たりくじを引いた確率です. 普通の感覚では, 確率というのは「未だ起こっていないこと」について考えるものです.ところ が,次郎くんが当たりくじを引いた段階では,すでに太郎くんはくじを引き終 わっているのです。いわば、「もう起こってしまったこと」についての確率を 考えている,ここがこの問題から生じている違和感の正体です. この問題は,次のようなストーリーをつけて解釈すると納得できるかもしれ ません. 太郎くんはくじを引いたのですが,それを誰にも見せずにどこかに隠して しまった. 次に,次郎くんがくじを引くと, それは 「当たり」 だった. このとき、 太郎くんが引いたくじが 「当たり」 である確率はどのくらいだ ろうか. このような後から起こったできごとから,それより前に起こったできごと の確率について考えるような問題を, 事後の確率と呼んだりします。 241 確率の考え方自体は今までと何ら変わりはありません。 面積図を使って、この 時系列が逆転する確率の問題は,解釈がなかなか難しいのですが、条件つき 問題を考えてみましょう. 「たりくじを引く」という事象をBとして,次のような面積図をかきました. p235 で, 「太郎くんが当たりくじを引く」という事象をA,「次郎くんが当 310 10 710 9 A B A 「Aという条件のもとでBが起こる確率」というのは,下左図のように「事 「象A」の青枠の中に占める 「水色の網かけ部分」の面積比です(これはもちろ ん となります). 同じように考えれば, 「Bという条件のもとでAが起こる 「確率」というのは, 下右図のように 「事象B」 の太枠の中に占める 「水色の網 「かけ部分」の面積比となるはずです. 3 10. 2 9 7 9 A 10 B A 3 310 29 9 LA B A 10 71 1-3 P(B)=青枠の中の水色の網かけ部分の割合 PB(A)=太枠の中の水色の網かけ部分の割合 それを計算する 32 10 9 PB(A)= 3 2 7 + 10 9 3.2 = 6 = 2 3・2+7・3 27 9 1 10 3 となります。 このように考えにくい条件つき確率の問題も、面積図を用いる と直感的にとらえることができ、とても理解しやすくなります。

解決済み 回答数: 1
数学 高校生

解答にある0.05とは何なのでしょうか

〔3〕 ある地区Xでお菓子Y が販売されている。お菓子Yを販売している店の店長は, 地区Xに住んでいる人全体のうち,お菓子Yを「おいしい」と思う人の割合が75% より多い、と自信をもっている。75%より多くいるのかを調べるため,地区Xにお いてアンケートを実施したところ, 28人中 25 人がお菓子Yについて「おいしい」と 回答した。 お菓子Yを「おいしい」と思う人の割合が 75% より多くいるといえるかどうかを, 次の方針で考えることにした。 ・方針 地区Xに住んでいる人全体のうち, お菓子Yについて「おいしい」と回答す る割合が 75% である, という仮説を立てる。 この仮説のもとで,28人中 25人以上が「おいしい」と回答する確率が5%未 満であれば,その仮説は誤っていると判断し, 5% 以上であれば、その仮説は 誤っているとは判断しない。 1,2,3,4の目が1つずつあり,それぞれの目が等確率で出る正四面体Aがある。 ただし, A を投げたときの底面の目を出た目とする。 Aを28回投げて1の目が出た回数を記録する実験を300セット行ったところ, 次の表のようになった。 1の目が出た回数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 計 度数 2 4 13 24 38 49 51 45 33 21 11 5 3 1 300 (数学Ⅰ 数学A第2問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

赤波がよく分かりません。教えてください🙇‍♀️

数学Ⅰ データの分析 31 共分散相関係数 Skill 共分散は 「偏差の積の平均値」,相関係数は (共分散) 共通テスト (標準偏差の積) 重要度 2つの変量xのデータを (x1, 1), (x2, P2), ..., (xn, yn) とし, x, yの平 均値をそれぞれx,とし,xとy の標準偏差をそれぞれ 8x, 8yとし,xとyの 共分散を Sx とする。 (共分散 Sxy)=(偏差の積の平均値) =((xx)(-3)(x-x)(12-1)(x-x)(y-y)) xyの値の積 xyの平均値をxy とすると (共分散 S.x)=(積の平均値)(平均値の積)=xyxY (相関係数)= (共分散) (標準偏差の積) Sxy Sx Sy Check 40人の生徒に2種類のテストA, B を行ったところ、次のようなデータが得られ た。 変量 x, y をそれぞれテストA,Bの得点 (単位は点) とする。 32 ヒス Skill 四分 ヒストグラムに- と最大値・最小 見比べればよい Check 14人の生徒 のデータをとっ グラムに表し トグラムの各 含み、右側の 同じデータを トグラムと る。 平均値 中央値 分散 標準偏差 x 5.5 5.5 2.25 1.5 xとyの共分散 1.2 5.2 y 5.0 1.21 1.1 ア イ (1)xとyの相関係数は (2)変量yの各値に1を加えて変量y' をつくった。 このとき,xとy' の共分散は である。 ウ I である。 . 解答 (1) 相関係数は 1.2 === 0.72··· ≒ 0.7 1.5×1.1 12 12 ② 1 解答変 (2) 変量」の値に1を加えると平均値も増えるからの偏差はyの偏 と同じである。 ? よって,x と y'の共分散はxとyの共分散に等しく 1.2である。 変らよ中2 18 よ ま ↓ なぐ 深める 共分散や相関係数を求めるのに必要なのは、偏差である。 変量に操作を加える問題では、偏 ヒストグ 変化に着目する。 (34参照) 32 32

未解決 回答数: 0
数学 高校生

(2)のヶ〜セまでを求める時に、なぜ5分の2をかけているのですか?ベン図では求められないんですかね...どなたか教えてください🙇‍♀️

10 第3問~第5問は、いずれか2問を選択し、解答しなさい。 第3問(選択問題(配点20) 袋の中に赤玉2個、青玉2個、黒玉2個の合計9個の玉が入っている。この袋 からA,Bの2人が操作 1~操作3の手順により玉を取り出す。 操作:Aが袋から3個の玉を同時に取り出す。 9000 ↓ 2Cx2C 操作2:Aが取り出した玉のうち、赤と青玉は袋に戻す。 操作3Bが袋から3個の玉を同時に取り出す。 例えば、操作でAが赤玉2個、黒玉1個を取り出したとき、操作3でBは 赤玉2個 2個 の合計5個の玉が入った袋から3個を取り出 6C3 す。 一般に、事象の確率をP(X)で表す。 また、二つの事象XYの事象を XOYです。 1:3 操作1でAが取り出したのが0である事をX 1個である事象 Xs, 2個である事象をXとし、操作3でDが取り出した玉の色が2種類で ある事象をY である とする。 (1) P(X)- POR- 5. H 3 オ P(X)- である。 5' カ (2)X)が起こったとき、が起こる条件付き確率は 1755 E75 250 キ である。 ク シ PLAY= であり,P(Y)= である。 コサ スセ 他 △ ソ が起こったとき、事象 X」が起こっている条件付き確率は タ つである。 X 5 3-5 2 3-5 【学第3回は次ページに続く。) S + 2 5

解決済み 回答数: 1
1/59