学年

教科

質問の種類

数学 高校生

(4)からまったくわかりません... 解説お願いします

Think 例題 153 総合問題 右の図は,生徒20人に行った 整理と分析 301 **** 点で図形の得点が5点である生徒の 人数は2人である. の結果をまとめたものである. 関数 の得点xを横軸に,図形の得点yを 縦軸にとっている.図の中の数値は xyの値の組に対応する人数を表し ている。 数と図形のテスト(ともに10点満点) 10 9 8 1 7 1 11 6 1 11 y 5 121 4 たとえば、関数の得点が7 3 1 22 1 2 2 1 各生徒の得点について, x+y の最大値と, x-yの最大値 を求めよ. 0 01234 5 6 7 8 9 10 X が S 5. (2)図をもとに,次の表を完成させよ.また,各テストの得点の平均値 を求めよ. 点(点) 0 1 2 3 4 5 6 7 8 9 10 2435 10 関数(人) 0002 図形(人) 012335231 (3)(2)の表を使って各テストの標準偏差を求めると, 関数は2.8点 図形は3.6点, 関数と図形の得点の共分散は2.55 であった. 関 数と図形の得点の相関係数の値を四捨五入して小数第2位まで求 めよ.ただし,√7=2.646 とする.A0.80 右の表は、別の5人の生徒 A, B, 5人の生徒 ABCDE C,D,Eに同じ問題のテストを行 った結果である. 5人の関数と図 形の得点の平均値は, それぞれ 20 165 関数の得点 7 4 6 9 4 6 図形の得点 5 4 5 6 5 人の得点の平均値と同じであった.20人にこの5人を加えた合計 25人の生徒に関する関数と図形の得点の相関係数Rの値を小数第 2位まで求めよ. (5)これらのテストの結果について、次の①~③は正しいといえるか、 ① 生徒 25人の得点について、関数と図形の平均値からの散らば り具合は同じである. ② 生徒 20人の関数と図形の得点の正の相関はやや強いが,A~ Eの5人が加わると正の相関は少し弱まる. ③ 生徒 25人の図形の得点が一律に1点上がれば,25人の関数と 図形の得点の相関係数の値はより大きくなる. 第5章

回答募集中 回答数: 0
物理 高校生

この問題の(3)がよく理解できません。詳しく解説して欲しいです。お願いしますm(_ _)m

0 の位置 の位置 x〔m〕 が経過 形 基本例題 32 定在波(定常波) 153,154 解説動画 x軸上を要素の等しい2つの正弦波 a, b が,互いに逆向きに進んで重 なりあい、定在波が生じている。 図には, 波 a, 波 b が単独で存在したときの,時刻 t=0s における波a (実線)と波b (破線) が示してある。波の速さは2.0cm/sである。 (1) 図の瞬間(t=0s) の合成波の波形をかけ。 (2) 定在波の腹の位置x を 0≦x≦4.0(cm) ↑y[cm] a の範囲ですべて求めよ。 0 12 13 4 x[cm] (3) t=0s の後,腹の位置の変位の大きさが 最大になる最初の時刻を求めよ。 -1 -2 指針 定在波では,まったく振動しない所(節)と大きく振動する所 (腹)が交互に並ぶ。 解答 波波bの波長 入=4.0cm 周期 T=_4.0 =2.0S V 2.0 (1) 波の重ねあわせによって 図1 Ay[cm] 2 1 0 a 合成波 4 |x〔cm〕 x〔m〕 波形を示す (2) 図1の合成波の波形で、変位の大きさが最大 となる位置が腹の位置。 -1 -2 図1(t=0) ↑y[cm] 合成波 6.0 t[s] 振動を示す x=1.5cm, 3.5cm 8 (3) t=0s (図1の状態)の後,波 a,波bが 1/3 ずつ進むと、図2のように, 山と山(谷と谷) が重なり,腹の位置での変位の大きさは最大 になる。 進む時間はTだから 1=1/21=20-1 -= 0.25s 8 2 11 O 13 4 x[cm] -1 -2 図2(t=1/27)

回答募集中 回答数: 0