学年

教科

質問の種類

数学 高校生

青チャート数ⅠAより 例題63 2枚目の解法では求められないでしょうか? a>0、a=0(定数関数のため省きました)、a<0になることは理解しているのですが、この解法だとa<0の場合どう求めるのかが分かりませんでした… 解答通りに進める方が良いですか?

109 基本 例題 63 値域の条件から1次関数の係数決定 00000 関数y=ax+b (1≦x≦2) の値域が3≦ys5であるとき、 定数α, 6の値を求め よ。 基本62 指針 まず, 前ページの例題 62 同様, グラフをもとに値域を調べる。 3章 ここで,関数y=ax+bのグラフはαの符号で増加 (右上がり) か減少 (右下がり)の状態が 変わるから [1] a>0, [2] a=0, [3] a<0 の場合に分けて求める。 i 次に,求めた値域が3≦y≦5 と一致するように, a, bの連立方程式を作って解く。 このとき,得られたα 6 の値が場合分けの条件を満たすかどうかを必ず確認する。 CHART 値域を求めるとき グラフを利用 端点に注意 8 関数とグラフ 解答 x=1のとき y=a+b 定義域の端点の y 座標 。 x=2のとき y=2a+b YA [a>0] 2a+b [1] α>0のとき 域は この関数はxの値が増加すると, yの値は増加するから, 値 a+b≦y≦2a+b a+b よって a+b=3, 2a+b=5 これを解いて a=2,b=1 これは α>0を満たす。 1 2 x [2] α=0のとき この関数は y=b (定数関数)になるから, 値域は 3≦y≦5 値域は y= b YA [a<0] になりえない。 cecosta+b [3] a<0のとき この関数はxの値が増加すると, yの値は減少するから,値 2a+b 域は a+b≧y2a+b すなわち 2a+b≦y≦a+b 0 12 x よって 2a+b=3, a+b=5 これを解いて a=-2,b=7 これはα <0 を満たす。 以上から a=2, b=1 または α=-2, 6=7 答えをまとめる。

解決済み 回答数: 1
数学 高校生

(2)解説見てもいまいちわからないのですがどなたか教えて欲しいです 重要例題の方です!

重要 例題 71 定義域によって式が異なる関数 00000 関数f(x) (0≦x≦4) を右のように定義すると 2x (0≦x<2) き、次の関数のグラフをかけ f(x)= (1) y=f(x) (2) y=f(f(x)) |8-2x (2≦x≦4) けに利用す 分け ・分け。 √2 -101 指針 定義域によって式が変わる関数では,変わる境目のx,yの値に着目。 (2) f(f(x)) f(x)のxに f(x) を代入した式で f(x) <2のとき 2f(x), 2≦f(x) 4のとき 8-2f(x) (1) のグラフにおいて, 0≦f(x) <2となるxの範囲と, 2≦f(x) 4となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 答 (2)f(f(x)) = {g2(x)=f(x)≦4) (0≦f(x)<2) よって, (1) のグラフから 123 3章 ⑧ 関数とグラフとの 変域ごとにグラフをかく。 (1) のグラフから, f(x) D 0≦x<1のとき f(x)<2 1≦x≦3のとき 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, 平 f(x)の 1≦x<2なら f(x) =2x 2≦x≦3なら f(x)=8-2x のように,2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 0≦x<1のとき 1≦x<2のとき f(f(x))=2f(x)=2.2x4x f(f(x))=8-2f(x)=8-2・2x =8-4x 1 (p+d g+o 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=28-2x) =16-4x よって, グラフは図 (2) のようになる。 (1) (2) ya YA 4 A x R 1234 x 参考 (2) のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線 細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお, f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 8から2倍を 引く 4--- 0 4 x 2倍する 練習 関数 f(x) (0≦x<1) を右のように定義するとき, 71 次の関数のグラフをかけ。 2x (0≦x</ f(x)= (1) y=f(x) (2)y=f(f(x)) 2x-1 1 (1/2x-1)

回答募集中 回答数: 0
数学 高校生

このプリントが学校の数1の予習で出ているのですが、(1)以外全く分からないため手の付けられない状態です。問題にバツが着いている所以外とプリントの真ん中に書いてある問題の解説をお願いします。

数学Ⅰ 第3章 2次関数 第1節 2次関数とグラフ 事前課題プリント3(教科書p.86 ~p.87) ※事前に教科書の該当ページをよく読み、自分なりの答えを考えて授業に挑みましょう。また、分からない場合は何が分からない 授業の最初にグループ内で、以上の2点を発表し説明できるように準備をして授業に参加してください。 (1) y=2x2 のグラフをx軸方向に1, y 軸方向に2だけ平行 移動した式を求めましょう。 (1)g=21x-132 (2) 関数 y=f(x) の座標を何点か考えると (0,f(0)), (1,f(1)),(2,f(2)),(3,f(3)), (4,f(4)) となる これらを,例えばx軸方向に 1, y 軸方向に2平行移動させると (1,f(0)+2), (2,(1)+2),(3,(2)+2),(4,f(3)+2), (5,(4)+2) となる これより,y=f(x) をx軸方向に1, y 軸方向に2平行移 動したグラフはv=f(x-△) と表すことができる。 ○と △に入る数字を求め、理由を説明しましょう。 y=21-1)22 (2)y=f(x)を {} 7174 y→ +P 9 と平行移動するとy-9=f(x-p)になる この公式を用いたやり方と、頂点に注目する やり方の2通りで平行移動後の玉の求め方 説明しょう。 (3)① y=x^2+4x1をそ 77+1 (2) を参考に,一般的な関数 y=f(x) をx軸方向に 軸方向に平行移動した式がどのような式になるか説明しま しょう。 y→+2 77-2 (4) y=x2-4x+5 を次のように移動した式がどのような式 になるのか求めましょう。 14 ① 頂点の座標を求め、 グラフの向き (aの値)に注意しましょう。 ② ★x軸に関して対称移動 ③ y軸に関して対称移動 ③原点に関して対称移動 (5) (5) y=f(x)に関して、次の各式は①x軸に関して対称移動 ②y軸に関して対移動 ③ 原点に関して対称移動した後の 式を表す。 どの式が ①~③のどれに当てはまるのか説明しま しょう。 -y=f(x) y= f(-x) -y=f(-x) (6)(5)を用いて,(4)の問題に答えましょう。

回答募集中 回答数: 0
数学 高校生

解答のところでなぜy軸との交点のy座標はcであるのかがわかりません。 教えてください🙏

基本例題 52 2次関数の係数の符号とグラフ 2次関数y=ax2+bx+c のグラフが右の図で与えら れているとき,次の値の符号を調べよ。 00000 y (1) a (2) b (4) 62-4ac (5) a-b+c CHART & THINKING グラフから情報を読み取る (3)c p.91 基本事項 4.基本51 上に凸か, 頂点の座標は? 式の値は直接求めることができない。 「上に凸か,下に凸か」, 「軸や頂点の位置」, 軸との交点の位置」 などに着目して、 式の値の符号を調べよう。 下に凸か? 3章 x=-1 における 10 座標は? 7 x 軸との交点の 位置は ? 軸の 位置は? 解答 関数とグラフ ax2+bx+c=ax+ b 2a 62-4ac ax2+bx+c 4a よって, 放物線y=ax2+bx+c の軸は直線x=- b2-4ac 頂点の座標は 4a る。 b =a(x²+x)+c 2a" y軸との交点のy座標はcであ ={(x+2 b2 b +c 2a) =(x+2)- b +c 2a また, x=-1のとき y=a(-1)2+6(-1)+c=a-b+c =a(x+1)² 62 62-4ac 2a 4a (1) グラフは上に凸の放物線であるから a <0 b b (2) 軸が x<0 の部分にあるから <0 2a ->0 2a (1)より, a < 0 であるから (3) グラフがy軸の負の部分と交わるから (4)頂点のy座標が正であるから b<0 c<0 b2-4ac >0 4a (1)より, a<0 であるから -(b2-4ac)<0 すなわち b2-4ac > 0 (5) a-b+c は,x=-1 におけるyの値である。 ←放物線y=ax2+bx+c について, x軸と異なる2点で交 わる⇔ b2-4ac > 0 が成り立つ (p.139 以降 を参照)。 グラフから,x=1のとき y>0 すなわち a-b+c>0 PRACTICE 52Ⓡ ③ 右の図のような2次関数y=ax2+bx+c のグラフについて, 次の値の正。 0負を判定せよ。 (1) a (4)62-4ac (2) 6 (3)c (5) a+b+c (6) a-b+c 0 1

解決済み 回答数: 1