学年

教科

質問の種類

数学 高校生

(3)でx=2520l+1までは理解したのですが、 その後の解説から、ユーグリット互除法のように少しずつ変形が行われていて結局どうして答えに行き着くのかが分かりません。 文字も多くて混乱しています。 ご回答よろしくお願いします🙇🏻‍♀️՞

数学Ⅰ・数学A 第3問~第5問は,いずれか2問を選択し, 解答しなさい。 第4問 (選択問題)(配点 20) 17 (1)34と85の最大公約数は アイである。 次に,Nを3桁の自然数とする。 Nと85の最大公約数がアイ であるようなNのうち、最も小さい数は である。 N=ウエオ 102 17 60 数学Ⅰ・数学A (3)4,5,6 の最小公倍数は サシであり,2,3,4,5,6,7,8,9の最小公 2520 倍数はスセンタである。 次に,(2)の方程式 ①の整数解 (x, y) において, xが正で,2,3,4,5,6,7, 8,9のどれで割っても1余るものを考える。 xは 2520 x=スセソタ 1+1 (Zは0以上の整数) (2) 不定方程式 17 7x- アイy=1 について考える。 方程式 ① を満たす1桁の自然数x,yは 5 2 x= カ y= キ であり, 方程式 ①のすべての整数解は, 整数を用いて と表され 17 5 2520 クケk+ カ =スセソタ1+1 が成り立つから ・① 17 4 630 クケ k= チ シテト 1-1) と変形できる。 ここで 630 17 37 ツテト クケ × ナニ +1 (x, y) クケk+ コ [k+ キ と表される。 17 5 2 7 (数学Ⅰ・数学A 第4問は次ページに続く。) である。 よって、考えているxが2番目に小さくなるのは 18 l= ヌネ のときである。

解決済み 回答数: 2
数学 高校生

【統計的な推測】 (ケ)についてです。 これってなんで二項分布に従うのですか?解いてる時は感覚的に無効分布だと思ったのですが見直したらよく分からなくなりました。 正規分布に従うときと二項分布に従うときの違いってなんですか?

以下の問題を解答するにあたっては,必要に応じて27ページの正規分布表を用い を行った。 地域Kにおける高校生のスマートフォン(以下,スマホ)の利用状況について調査 数学C 第4問~第7問は,いずれか3問を選択し, 解答しなさい。 第5問 (選択問題(配点16) てもよい。 数学II, 数学 B 数学C 昨年度の地域 K の高校生全員を母集団とし, 400人を無作為に抽出する。この とき,1≦h<2である高校生の人数を表す確率変数をY2h<3である高校 生の人数を表す確率変数を Zとする。 Yは ケ に従う。 また, Yの標準偏 差はZの標準偏差の 6 コ 1 1.83 サシ 倍である。 夕 B(400, 0.2) √V(x)=400.0.2(1-02) 68 (1) スマホの所有台数について調査するため,地域Kの高校生を無作為に10人選 び, 次のアンケートを行った。 20 18 26 地域Kでは,予算の関係で今年度は全数調査ではなく, 標本調査を行うことに なった。 標本の大きさを1600として, 無作為に抽出した高校生を対象に調査を V80.0.8=64=8 行ったところ, スマホ利用時間の標本平均は4.7時間であり, 標本の標準偏差は 2.4時間であった。 アンケート 2.9 8 次の選択肢から、 自分のスマホの所有台数を選んでください。 60 今年度の高校生のスマホ利用時間の母平均をmとし, 母標準偏差は2.4 とす 54 る。 標本の大きさ1600 は十分に大きいので, 標本調査の結果による, m に対す 60 A : 0 台 B:1台 C2台 D : 3台以上 0.75 る信頼度 95%の信頼区間は ス である。 アンケートの結果は E(x)= 0x110 8160 m-4.7 2.4 2.4 +1× +2× ×1/6+3×10 56- 1000 0.06. 40 40 ケ A:1人 B:7人 C:2人 D:0 人 については,最も適当なものを,次の①~⑤のうちから一つ選べ。 =0.06 T To 10 であった。 この10人の集団において, 一人を無作為に抽出したとき, その高校生 のスマホの所有台数を表す確率変数を X とする。 Xの平均 (期待値) は 10 ⑩ 正規分布N (400,0.05) ① 二項分布B (400,0.05) 10 0.0 402.4 ②正規分布N (400,0.1) ③二項分布B (400,0.1) ア は オ カキである。 イであり,X2の平均は ウ エラである。 また, Xの分散 E(x)= ④ 正規分布 N (400, 0.2) ⑤二項分布B (400, 0.2) 8 + To 10 10/15 029 10 v(x) = 400.0.1 (10.1) =40×0.9=36 100=136=6. V(x)=(x)E()=1.5-1.21. (2)地域Kでは, 高校生のスマホの1日の利用時間 (以下, スマホ利用時間) を毎年 度調査している。 昨年度は,地域Kの高校生を対象に全数調査を行った。 ただ し, スマホを所有していない高校生は,スマホ利用時間を0時間とした。 以下の 表は,スマホ利用時間をん (時間)としたときの全数調査の結果である。 ス については,最も適当なものを,次の①~⑤のうちから一つ選べ。 ⑩ 4.02mm 4.92 ② 4.47 ≦m≦4.95 ④ 4.58≦m≦4.82 ① 4.44≦m≦4.90 ③ 4.55≦m≦4.85 ⑤ 4.62mm ≦ 4.88 121 h 0≦x<1 1≤h≤2 2≤h<3 割合 75% 10%】 3≦h < 4 4≤h 20% 1.4 12. 25% 40% To 1.21 100 ただし、数値はすべて正確な値であり,四捨五入されていないものとする。 0.29 h. np (数学II, 数学B, 数学C第5問は次ページに続く。) B(400,0.1) (数学II, 数学B, 数学C第5問は次ページに続く。) -1.96€ m-4.7 0.06 € 1.96 -0.1176m-4.70.1176 0 -22- 30+65 -23-45824 0.11 4.7 m64,8156 95

解決済み 回答数: 1
化学 高校生

3をかけている理由はなんですか?

問4 ある食用油を構成する油脂Xは,さまざまな油脂の混合物である。 油脂Xの 成分を調べるために実験I ~Ⅲを行った。 この実験に関する問い (a~c)に 答えよ。 実験Ⅰ 油脂 × 3.50gを完全にけん化するのに、水酸化ナトリウム NaOH が ア g必要であった。 この結果より, 油脂Xの平均分子量は875 である ことがわかった。 実験Ⅱ 油脂X3.50g に十分な量の臭素 Br2 を作用させたところ, g のBr2 が反応した。 この結果より, 油脂 × 1 分子あたりに存在する炭素間二 重結合の数は,平均3.3個であることがわかった。 実験Ⅱ 油脂Xを構成する脂肪酸の種類を調べたところ, パルミチン酸 C15H31 COOH, オレイン酸 C17 H33COOH, リノール酸 C1 H3COOH の3種 類だけであった。 a 空欄 ア に当てはまる数値として最も適当なものを,次の①~④の うちから一つ選べ。 23 g ① 0.16 ② 0.32 ③ 0.48 0.64 b 空欄 イ に当てはまる数値として最も適当なものを次の①~④の うちから一つ選べ。 24 g ① 0.92 ③ 3.7 ④ 5.5 282 C 油脂Xを構成する脂肪酸のうち, パルミチン酸の存在率 (存在する物質量 の比率) は10%であった。 オレイン酸の存在率は何%か。 最も適当な数値を、 ①~⑤のうちから一つ選べ。 284 25 % ao 8770 ① 70 ② 74 ③ 78 ④ 82 ⑤ 86 775 282 100で875 89.5 09448 Xpa (59. ⑤ 18 89775 8,75c 8,79 91-25

解決済み 回答数: 1
数学 高校生

【統計的な推測】 確率変数XiとXってなんなんですか? 何が違うんですか? 頭の悪い質問ですみません🙋

第5問 (選択問題) (配点 16) いてもよい。 問~第7問は,いずれか3問を選択し, 解答しなさい。 以下の問題を解答するにあたっては, 必要に応じて 19ページの正規分布表を用 太郎さんと花子さんには,共通で好きなお菓子がある。 そのお菓子は1個ずつ包 装された5個が1つの箱に入って売られている。そのお菓子にはある割合で特別な 味付けのものが混じっている。 特別な味付けのお菓子は無作為に箱に入れられ,1 つの箱に1個もないこともあれば2個以上のときもある。特別な味付けのお菓子の の割合といわれているが, 2人は常々もっと少ない割合ではないかと感 そこで2人は,友達や家族の力も借りて特別な味付けのお菓子の個数の 情報を集め、 検討してみることにした。 1 割合は 2人は調査を始める前に,有意水準と棄却域について自分たちなりの考えをまと 止めておくことにした。 数学Ⅱ・数学B 数学 C 2人は, どの包装についても確率で特別な味付けのお菓子が, 確率 1-で普 通のお菓子が入っているように0 <<1である定数を定められると仮定して p=1/3であることを帰無仮説 = 1/3であることを対立仮説として有意水準5%の 両側検定で判定することにした。 2人は情報を集めた 80 箱分400個のお菓子における特別な味付けのお菓子の個 数が70個であることを確かめた。 どの包装についても確率 1/3で特別な味付けのお 菓子が入っており,確率 で普通のお菓子が入っていると仮定する。 包装1個ご とに1以上400以下の整数を1つずつ割り振り, 数えごとに確率変数X を, 数 えが割り振られた包装1個が特別な味付けのお菓子だったら値 1, 普通のお菓子だ ったら値0をとる確率変数として定める。 さらに X = X1+X2+ ・・・ + X 400 により確 率変数Xを定める。 X, Xの期待値 E (Xi), F(X)について E (X)= コ (i=1, 2, ..., 400) であり E (X)= シス である。 また, Xi, X の分散 V(X), 太郎 : 模擬試験などで使われる偏差値は50+ 計算されるそうだよ。 (個人の得点) (平均点)、 (標準偏差) ×10 で (X)について V(X)= セ ソタ (i=1, 2,.., 400) であり V(X)= チッ で 花子: 正規分布表から標準正規分布における有意水準 5% の両側検定におけ 96 る棄却域は ア イウ 以下または ア イウ 以上だから, 一般の正規分布における有意水準 5% の両側検定における棄却域は, 偏差値で表現すればエオ カ 以下または キク ある。 400 を十分に大きい数とみてXの確率分布は期待値 シス 標準偏差 テ の正規分布で近似できる。 よって実際に特別な味付けのお菓子が400個中 70 個だ ったことから有意水準5%の両側検定により ト 。 以上と 400- なるね。 30 の解答群 69 太郎: 模擬試験について調べるときに受験者から無作為に1人選ぶとして, そ れなりに選ばれそうな範囲だね。 4. 6 ⑩仮定を疑わせる結果となった 花子: 私たちはあまり強い表現は用いないことにして, 数値が棄却域に属する ときは 「仮定を疑わせる結果となった」, 棄却域に属さないときは 「仮 定を疑わせる結果とはならなかった」と述べることにしよう。 ①仮定を疑わせる結果とはならなかった 0405 1.96×10+50 =-19,650 (数学Ⅱ・数学B 数学C第5問は次ページに続く。) 20.95 69,6 -16- (数学Ⅱ・数学B 数学C第5間は次ページに続く。) -17- 400

解決済み 回答数: 1