学年

教科

質問の種類

物理 高校生

線を引いたところで飛行機に対して平行な方向へ投げたら相対速度と実際の速度は変わりますか? また最後の問いの時はY軸方向の初速度が50だからずっと50m/sということで合っていますか?

第1問 図1のように、水平な地表面上に軸と y軸を設定する。軸と軸は直交している。飛 行機がy軸の上方490mを速さ50m/sで y 軸正 の向きへ水平に飛んでいる。 この飛行機が xy 座 標の原点 0 の真上 (鉛直上方) を通過した瞬間に 小球を投げ出す場合を考える。 空気抵抗は無視で きるものとし、重力加速度の大きさを 9.8m/s2と して以下の問いに答えよ。 数値については,有効 数字2桁で答えること。 高さ490m 速さ 50m/s 図 1 → 小球を水平方向に投げ出すとする。 飛行機に対する小球の速度をある向きである大きさに したら, 小球が原点0に落下した。 (2) 問1 小球を投げ出す速度 (飛行機からみた速度)の大きさと向きを答えよ。 向きを答える には,どの軸の正負どちら向きかを答えること。 問2 小球が投げ出されてから地表に達するまでにかかる時間を求めよ。 (T) 次は,小球を飛行機に対して速さ4.9m/sでæ軸正の向きに投げ出した場合を考える。 問3 落下地点のæ, y 座標をそれぞれ求めよ。 (31) 今度は,小球を飛行機から見て真下向き (飛行機に対する相対速度が鉛直下向き)に速さ 49m/sで投げ出した場合を考える。 問4 落下地点のæ, y 座標をそれぞれ求めよ。

回答募集中 回答数: 0
物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0
物理 高校生

この問題のイはなぜ⊿yに1/2がついているのですか?等加速度運動の式だとついていないのが正解のように思えます

次の文章を読んで, れの解答欄に記入せよ。 なお, に適した式を問1、問2では,指示に従って解答を で与えられたものと同じ式を表す。た はすでに だし,以下では,弦が受ける重力は無視できるものとする。 必要であれば、以下の関係式を使 ってもよい。 01 のとき sin0≒0≒ tan 0 7 x 関数y=sin(ax+b) の傾きは xの関数 y=cos (ax+b) の傾きは =-asin(ax+b)(a,b: 定数) Ay Ax sin(a+β)+sin(a-β)=2sinacos β, sin (a+β)-sin(α-β)=2cos a sin β T (1) 図1のように,一定の大きさTの力で水平に張られた線密度(単位長さ当たりの質量)p の十分に長い弦を伝わる横波について考える。 図2のように, 微小時間 At の間に,波が 水平方向に微小な長さ x だけ進むとき, 弦を伝わる波の速さvv=ア と表される。 この間に、波の右端付近では, 長さ x の部分(以下ではこの部分をXとする) が波の進行 とともにわずかに持ち上げられる (変位する)。 微小時間 At の間, X は張力のみを受けて, 運動するとみなせる。 X の鉛直方向の運動を初速度 0, 加速度の大きさαの等加速度運動と 近似すると,Xの重心の変位の大きさ 1/24y , Ata のみを用いて, 1/1/24y=イ]と 表される。さらに, 長さ x の部分 X が受ける力の鉛直成分は,張力 T の鉛直成分 Tyの みであるから,運動方程式より,aは,p, Ax および T, を用いてa=ウと表される。 加えて,弦が水平となす角度が十分小さいとき, Ty=x Ayr と書くことができるので,”は To のみを使ってv= エ と表すことができる。 of T Ay Ax V Ty =acos(ax+b)(a,b: 定数) 図1 4x 4y T T

回答募集中 回答数: 0
物理 高校生

3枚目のエネルギー保存の式を図で描き、そこからXminを求めようとしたのですが上手く行きませんでした。 グラフが間違っていますか? 正しいグラフを教えてください🙇‍♀️

図のように, 滑らかな水平面上に質量Mの小物体Bが置かれ, その右方には, ばね定数kの軽い ばねが取り付けられた質量mの小球Cが置かれている。 いま, Bの左方から質量mの小球Aが速さ ひ でBに向かって運動し衝突した。 A, B, C の運動はすべて同一直線上で行われ, 空気の抵抗は無視で きる。また, A,B間の反発係数はe として,次の問に答えよ。 ただし, 速度, 力積等のベクトル量は, 図の右向きを正とする。 A (1) 0 m-eM m+M vo ②00 10 問1 衝突直後の A, Bの速度をそれぞれ, Vとする。 これらを求めよ。 1 V = 2 772 eM m+M ① V. 5 V 6 -Vo ② V (3 m k Vo ハイレベル物理 前半 第4講 チェックテスト V (6) M m+ M. mM k(m + M) 問2 衝突の瞬間, A B から受ける力積を求めよ。 3 mM (1) mvo (2) -mvo -Vo m+ M m (m-eM) m+M em - M m+M 6 ③3 -Vo -Vo em m+M M(em-M) m+ M 4 V (6) V -V 7 B 4 ③V M m m+M (1+e) M m+M -Vo -vo 7 問3 B がばねと接触している際、 ばねが最も短くなるときのBの速度を求めよ。 4 M m+M m m+M mM √k(m-M) 4 問4 問3のとき, ばねの自然長からの縮みはいくらか。 5 ® V√ √ M ④V ②V m+M k -Vo V mM m+ M (1+e)mM, (m + M)² 100000 V (1+e)mM m+M (8) ⑦V -Vo (1+e)m m+M 8 -Vo 8 m-M k -Vo m √k(m + M) (1-e) mM y (m+M)² C (1+e) mM m+ M m ⑧ V. -Vo M √k(m + M)

回答募集中 回答数: 0
物理 高校生

共通テストプレ、物理基礎第3問の問2についてです。 答えは①なのですが、なんでそうなるのかがわかりません。 波ができた直後の状態は②だと思うんですが、そこから1波長分動くだけなので答えは③で変わらないと思いました… 教えてください!🙇

物理基礎 第3問 縦波の性質および気柱の共鳴について後の問い(問1~5)に答えよ。 (配点 16) 縦波は波の進行方向と媒質の進行方向が平行である。 縦波の伝わり方を考えるため に以下のような実験を行った。 図1のように, なめらかで水平な面をもつ机の上に自 然の長さが150cmのばねを置き, ばねの右端は支柱に固定した。 自然の長さの状態 のときのばねの左端を原点としてばねに沿った向きに x軸を設定する。 ばねに5cm の間隔で軽いリボンを結び, 左端(原点 x = 0) から0番,1番,2番,3番… 20番 (x=100cm) と番号をふる。 図2のように, 0番のリボンを時刻 t=0s から振幅 1.0cm, 周期 0.80sでx軸方向に1回だけ振動させた。 ただし, x軸の正の向きの 変位を軸の正の向き,x軸の負の向きの変位をy軸の負の向きとして表している。 ばねの振動が伝わる速さ, すなわち波の伝わる速さは50cm/sであり、水平面とば ねの接触部分の摩擦およびリボンの空気抵抗は無視できるものとする。 机 リボン 3 0 5 10 15 0. 1 0000000000000 240 ① 10 1 19 20 [*] 95 100 ② 20 poooooo 3 30 支柱 150 - 16 - -x [cm] y[cm〕 1.0 ④40 0. -1.0 問1 ばねを伝わる波の波長はいくらか。その値として最も適当なものを,次の ①~ ⑤のうちから一つ選べ。 12 cm 20140 70.80+[s] 図 2 5 50

回答募集中 回答数: 0
1/7