学年

教科

質問の種類

物理 高校生

Wacって 緑で合ってますか?

の公式より、T=2 m √ ka • TB =1倍 T=√2k-1 10% TA VRD =2 となる。 ka 7B とすると, ばね振り子の周期 T=221 2m である。以上より, の答 2 電体は正者 西原休日は漁電西なので、いずれも 4C につくる電場の向きはAからBの向きである。AとBの電気 量の大きさQが等しく, AOBOの距離もRで等しい。 した って, AとBがそれぞれ点0につくる電場の強さ Ex, Eaは 等しく, 点電荷による電場の公式より,Ex=E kQ R2 となる。 以上より, AとBが点0につくる電場は,それぞれの電場を合 成して, AからBの向きへ強さ 2kQとなる。 R2 ばね振り子の周 T-2 また,一様な電場から A には左向きに, B には右向きに静電気 力がはたらくことになる。 よって, 一様な電場をかけた直後、リ ングは反時計回りに回転しはじめた。 +Q 一様な電場から 受ける静電気力 +Q リング A 回転をはじめる方向 T: ばね定 質量 点電荷によ 電気量 いる点の電 E=k R: 電場の 遠ざかる く向き。 EA EB 一様な電場 B. B Q -Q 一様な電場から 6 受ける静電気力 2の答 ① 3の答③ 問3 過程1から過程3の状態変化を圧力と体積の関係を表すグラ フに書き換えると,次図のようになる。 状態AとBは同じ温度 なので,それらの温度で決まる等温曲線上にあり,状態CとD も同じ温度なので、それらの温度で決まる等温曲線上にある。 こ こで,圧力と体積の関係を表すグラフの面積は,気体が外部にし た仕事の大きさを表す。 したがって, 気体が外部にする仕事の大 小関係は,グラフの面積を比較すればよい。 次図より,それぞれ の過程で気体が外部にする仕事の大小関係は, Wac<WAB<WAD - 103 -

回答募集中 回答数: 0
物理 高校生

赤線引いたところってなんでそう分かるんですか?🙇‍♂️ 右のグラフを見て吸熱か放熱かパッとわかる考え方教えてください🙇‍♀️

ょう。 これ から 一定量の理想気体をピストン 5 のついた容器に閉じ込め、図 圧力 図10-23 のグラフのように圧力と体積を変化 B させた。 る。 B→Cの過程では,気体の温度を A→Bの過程では、気体の体積を一 定に保ったまま1500Jの熱量を加え A C 一定に保ったまま (1500Jの熱量を加え 0 → 体積 態まで戻し、外部から1000Jの仕事をされた。 る。 C→Aの過程では、気体の圧力を一定に保ったままピストンをAの状 このようなサイクルを描く熱機関の熱効率はいくらか。 た物 すな 化 てび 着目! P-V図を見てもわ 元流でかるように,このサイクルで 解く! 圧力 気体が熱を吸収する過程は、 A→BとB→Cです。 一方, C→Aは外か ら仕事をされ,温度も下がり、熱を放出 する過程です。 吸熱 吸熱 図10-24 END A そこで,熱効率の分母にくる気体の吸 収した熱量は, A→BとB→Cの2つの過 程で吸収した熱量を足せばよいですね。 放熱 → 体積 それを4Q吸収として, 4Q 吸収 =1500+1500 3000 〔J〕 次にこのサイクルで気体が外部にした正味の仕事を求めましょう。 A→Bは定積変化ですから、気体は外部に仕事をしません。 B→Cは等温変化ですので,気体の内部エネルギーの増加⊿Uは0です。 そこで,熱力学第1法則, 4Q=⊿U+PAV で, ⊿U=0ですから,

回答募集中 回答数: 0
物理 高校生

この問題のボイルシャルルの問題はなぜ、A+B=ABみたいにしてるのですか? 186番の問題ではA=ABみたいにボイルシャルルで作ってるんです。どなたか教えてください

●センサー 60 単原子分子の理想気体のと 3 5 き, Cy=-R,C,== 2 例題 44 気体の混合 容積 6.0×10-3m²の断熱容器 A の中には 1.5×10 Pa, 300Kの単原子分子の理想気体容積 3.0×103m²の断 熱容器Bの中には4.5 ×10°Pa 270 K の単原子分子の理 想気体が入っている。 コックを開いて両方の気体を混合 し,十分に時間がたった後の圧力p [P.]と絶対温度 T [K] を求めよ。 ●センサー 61 全体の体積が不変 (仕事が 0) 断熱のとき, 内部エネ ルギーは保存される。 122 第Ⅱ部 熱力学 (3) 単原子 UA+UB=U 閉じ込めた気体では,物質 量が保存される。 NA+NB=n 3 AU=nCyAT=nRAT[J] 2 (4)(1)~(3)より,Q=4U+W(熱力学第1法則 ) M=90×8=0.W=0(どこも押し動かしていないので仕事は より, AU=0である。 H PAVA DBVB_D(VA+VB) + RTA RT 207212 3 3 3 3 2 PAVA+PBVB = P(V₁ + V₁) V より. -U==nRT= RT (1.5 ×10) × (6.0×10 - 3 ) 300 (2.5 ×10) × 16.0 × 10-3 +3.0×10-3) T ゆえに,T= 2.8×10 [K] B り Nik RT (4.5 ×10) x (3.0×10-3) + 270 23 A (1.5 × 10%) × (6.0 × 10~) + (4.5 × 105) × ( 3.0×10-3) =p(6.0x10-3+3.0 × 10-3) ゆえに, p= 2.5×10°[Pa] mol)の単 この体の定モル状態 (2) 体脂定で量QU〕を加 (3) 圧力一定量Q0) を加 FF 206 等護変化 気体の温度 縮したこのとき、気体は 気体の混合絶対温 の入りはないものとす EURST 201 V=nRT

解決済み 回答数: 2
物理 高校生

物理の熱力学についてです (3)の気球でアルキメデスの浮力が働いているのですが、浮力の空気密度がバーナーに点火する前の温度での密度なのでしょうか

0.2S B 向のみ よい。 本の V To と TVのときで, シャルルの法則・ T Vo _ V ' V' = これから, T' To T' To 求める空気の密度を ρ'[kg/m²] とすると, m To VT (kg/m³)...2 To V.T' T= m p'=- =mx. V' (3) 気球は,風船部の空気を含んだ全体の重力,および風船部の浮力 垂直抗力を受け,地上からはなれる瞬間に垂直抗力が0となる。 風船 部内の温度がT〔K〕 のときの空気の密度をp[kg/m²] とすると, 式 ② p= -[kg/m³) 3 m To VOT = mV mV-MV₁ =一定の式を立てると V'= T〔K〕 Vo〔m²] から. 風船部の空気の質量は,(密度)×(体積)=pVであり,重力は pVg と なる。浮力は,アルキメデスの原理から,風船部の空気が押しのけな 外気の重さに等しく, oo Vg である (図)。 地上からはなれる瞬間に, (重 力)=(浮力) となるので, 式 ①, ③の値を用いて, Mg+pVg=pVg Mg+ ·② mTo 0 PorVg= m Vo Vg ●ここでは, 風船部内の 空気を直接考えるのでは なく、風船部内の空気と 同じ温度, 密度の一定量 の空気を考えている。 お風船部内の空気は 気と通じており, その 力は常に外気圧と等し ので、考えている空気 温度変化においても, 力が一定という条件を 用している。 ●式②のT'をTに置 換えてpが得られる poVg 0 pVg Mg

解決済み 回答数: 1
1/5