学年

教科

質問の種類

物理 高校生

物理の電磁気、交流回路についての質問です。 (4)、(6)についてです。 僕は(2)で求めた電流についてのtの関数を積分してQ=CVに代入、同じく微分してV=L*(di/dt)に代入してそれぞれコンデンサーとコイルにかかる電圧をtの関数で表してからその関数の最大値を√2で割... 続きを読む

100 /10 10 7 100 (センター試験) 130 図1のように,抵抗値 R の抵抗,電気容量 C のコンデンサーおよ び自己インダクタンスLのコイルを直列に接続し, 交流電源につない だ回路がある。 オシロスコープで抵抗の両端の電圧を観測したところ, 図2のような周期T, 最大値 V の正弦曲線であった。 オシロ 電圧 スコープ Vo--- T m 2 T 抵抗 コイル 0 コンデンサー f t 時刻 - Vol 図2 図 1 (1) 交流の角周波数を求めよ。 以下, (5) 以外はTの代わりに を用いて答えよ。 (2) (3) この直列回路での消費電力 (平均電力) を求めよ。 また実効値を求めよ。 抵抗に流れる電流を時刻tの関数として表せ。 (4) コンデンサーにかかる電圧の実効値を求めよ。 また, 電圧 vc を時 刻tの関数として表せ。 (5)図2で,コンデンサーにかかる電圧が0になる時刻を Ost ST の範囲で求めよ。 (6)コイルにかかる電圧の実効値を求めよ。 また,電圧 v を時刻tの 関数として表せ。 \(7) 電源電圧の最大値 V, を求めよ。 また, ab間の電圧の最大値を 求めよ。 + (富山大 上智大 )

未解決 回答数: 1
物理 高校生

これの(3)がわかりません。

403 ころ、 の電 sin wt, EL 影響で送電先の電圧が送電元の電圧より大きくなることがあり問題。 物理 例題 91 交流のベクトル表示 物理 基礎 物理 406 抵抗R, コイルL, コンデンサーCを直列に接続し、 電圧の実効値が20Vの交 流電源に接続したところ、 実効値2.0A の電流が流れた。 この場合のLのリアク タンスを20Ω, Cのリアクタンスを15Ωとする。 (1) LとCの電圧の実効値 Vre [V], Vce 〔V] を求めよ。 (2) 電圧のベクトル図より, 電源の電圧に対する電流の位相の遅れ [rad〕 と, 抵 抗にかかる電圧の実効値 VRe 〔V〕 を求めよ。 (3) 電源電圧 V [V] 時刻f[s] を用いて V=20√2 sin 100t と表されるとき 電 [流I[A] を式で表せ。 3.14 とする 解答 (1) 交流の角周波数をw 〔rad/s], ● 138 センサー 電圧に対する電流の位相 ・抵抗→同じ。 ・コイル→だけ遅れる。 電流の実効値を I [A], Lの自己インダ クタンスをL[H], C の電気容量を C[F] とすると,VLe = wLI=20×2.0= 40[V] VLe+Vce 40V 1 120V ・コンデンサー Vce= - I = 15×2.0= 30[V] wC 10V VRe →だけ進む。 センサー 139 RLC 直列回路の交流のベ クトル表示 (電流ベクトルを右向きに 描くとすると) ・抵抗にかかる電圧 VRe は 右向き。 ・コイルにかかる電圧 Vre は上向き。 ・コンデンサーにかかる電 圧Vce は下向き。 ・電源電圧 V は, Ve=VRe+ Vie+Vce センサー 140 (2) 共通に流れる電流I を右向きのベクト ルとし、反時計回りを位相の進む向き とすると,Rにかかる電圧 VRe の位相は 電流と位相が同じなので右向きに描く。 Lにかかる電圧 VLe の位相は電流より位 π 30V Vce 相が今だけ進むので右図の上向きに描 く。Cにかかる電圧Vcの位相は電流よりも位相が今だけ遅 2 れるので上図の下向きに描く。 電源の電圧の実効値 V は, 数学的にVe=Vre + Vre+ Ve となることから,各ベクトルの 大きさを考えると, 上図のようになる。 この図より Vre+ Vcel = 10[V] となる。 よって, sinθ= | Vie + Veel_10. | Vel =0.50 20 π これより,0= - 〔rad〕 ......① 6 交流回路の瞬時値は,最大 値と位相を別々に求める。 π *te, VRe = V COS =20x 2=10√3=10×1.73=17.3 2 注 電圧や電流の最大値や位相 TRO 17(V) [ 29 などは, ベクトル表示による方 法でなくても、公式を用いて計 算で求めることができる。 (3) 電源の電圧の最大値を Vo [V], 電流の最大値を I〔A〕とす ると,V=Vosin wt のとき, I=Isin (wt-0) と表されるから, ①II より 最大値と位相を考えると, I= 2.0√2sin100㎖t- 6 29 交流と電磁波 255

回答募集中 回答数: 0
1/17