学年

教科

質問の種類

物理 高校生

黄色マーカーのところなんで-gなのですか?

x 解説動画 発展問題 48, 52 発展例題5 斜面への斜方投射 物理 Vo 図のように、傾斜角 0 の斜面上の点0 から, 斜面と垂直な 向きに小球を初速 で投げ出したところ, 小球は斜面上の 点Pに落下した。重力加速度の大きさをg として,次の各問 答え 0 OP (1) 小球を投げ出してから、斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 思考 44.2 球 達した た。 こ 小球日 t=0, とし 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 1 0=vot₂-9 coso.tz² (1) (2) (4) 0=t Vo 解説 200 (1) 斜面に平行な方向 にx軸, 垂直な方向に y軸をとる(図)。重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 20から, t2= gcoso gsino 45. -gcose, g ら, OP間の距離 xは, P x= x方向の運動に着目すると, x= -gsinO・2 か -129sin0-13-12 gsing-(20)* げ gcoso x成分: gsin y 成分:-gcosd 方向の運動に着目する。 小球が斜面から最も はなれるとき,方向の速度成分 vy が 0 となる。 求める時間をとすると, vy=vo-gcoso・t の式から, Point 2vtan0 gcose m ( 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y=0から方向 の最高点に達するまでの時間と,最高点から再 びy=0に達するまでの時間は等しく, (D) 4 0=vo-gcoso・t t₁ = Vo gcoso (2) Py=0の点であり, 落下するまでの時間 t2=2tとしてtを求めることもできる。 を友として,「y=vot-1/12gcost・12」の式から、 発展問題 [知識] A 43. 投げ上げと自由落下 図のように,高さ19.6mのビルの 屋上から 小球Aを真上に速さ14.7m/s で投げ上げた。 小球 Aは,投げ上げた地点を通過して地面に達した。 重力加速度の 大きさを 9.8m/s2 として, 次の各問に答えよ。 14.7m/s A B (1) 小球Aが地面に達するのは,投げ上げてから何s後か。 19.6m

解決済み 回答数: 1
物理 高校生

水色で囲った所から水色で囲った所まで途中式を教えてください。 また、水色の線で引いた所の途中式もお願いします。 教えてください!

自然長からαだけ縮んだばねがもつ弾性エネルギー U^は, すね。 -1/2 1² (₁²8) KD FW 2 2 2 UA です。この弾性エネルギーは小球に与えられ,小球は斜面BCをす。 がっていきます。 小球が点Cに達した瞬間の小球の速さをvとすると、力学的エネ 一保存則より、 1/23ka²=1/12/2mv²+mgh mvsd これをvcで解いて ka² Vc VC.x = v m 次に小球が点Cから空中に飛び出 す瞬間の、 水平方向の速度成分 UC を求めます。 斜面が水平とな す角が45° ですから, - 2gh Uc= /2 H= Josy I ka² 4mg ka² √ 2m 2 12/23ka -ka² = mvc.² + mgH + - gh verに上で求めた値を代入し、Hで解きます。 答え 1/2/201 h この速度の水平成分Ucz は,放物 運動中,ずっと同じですから,小球が達する最高点(これを点Dとします においては,小球はこの速度成分をもっていることになります。 それに対 して, 最高点では速度の鉛直成分はQです。 そこで,最高点Dの床からの高さを甘として, 最初のばねが縮んだ 態と小球が最高点に達した瞬間に力学的エネルギー保存則を適用すると、 次のようになります。 45° Vcy C (m Vc VCx 45° Vc *+. X Y Z \ 2 b XL

解決済み 回答数: 1
物理 高校生

(3) m+1じゃないですか?

(2) ス 光はA,Bに逆位相で達している。 すなわち, スリットSからA, B までの経路差 SA-SBが, 半波長 1/2の奇数倍となる。 SA, SB の それぞれを斜辺とする直角三角形において, 三平方の定理から (図2), SA=√/P+ (x+2) =√/1+ ( x + 1/² ) ² = 1 { 1 + 2 ( x + 1/² ) } SB=√/P+(2-x) =√/1+ (1/2 = x ) ² = 1 { 1 + 1² ( 1 / ² = ² ) } これから, SA-SB|=d 経路差 [SA-SB | が入/2の奇数倍となるので. 入 d=(2N+1)/12 y=(N+12) 12 (3) スクリーン XX' を移動させる前,点Pが次の明線となる条件は, 入 (1) の結果から, d=2mx/1/23 =mi... ① dx は変化しないので, Lが大きくなると, 条件式を満たすmは 小さくなる。したがって, XX' と AB の距離がL+ 4L になったとき, P は (m-1) 次の明線になる。この条件式は, =(m-1)入...② X L+AL 式 ① ② の辺々を割ると, d- V 424. ロイド鏡 解答 最も近い輝点: L+AL L SL m m-1 9LA Ad AL= LA 5番目の輝点: 4d' 指針ロイド鏡は,スリットSから直接届く光と,平面鏡 で反射して届く光を干渉させる実験装置である。鏡で反射す るとき,入射角と反射角は等しく, 反射光の経路の長さ(S→ DE) は, 鏡に対してSと対称な位置S'からEまでの長さ と等しくなる。すなわち, ヤングの実験と同様に考えること ができる。 ただし、鏡で反射した光の位相が逆になることを S' || 考慮する必要がある。 解説 鏡に対してSと対称な位置S' は, 鏡から距離dはなれている。 L m-1 スクリーン上の点をEとすると, 鏡で反射する光の経路の長さ (SD →E) 直接Eに届く光とS' Od, y la 112 分に小さいの一 同様の近似を用 図2はSを させたとして が、A側に移動 しても、同じ れる。 また。 しても、同じ れる。 図 2 OLが大きく て、隣りあう 4x=LA/dt り明は点 かる向きに利 D SE

解決済み 回答数: 1
1/8