学年

教科

質問の種類

物理 高校生

この問題の(2)なんですけどどうして-9.8 がつくのかが分かりません。誰か教えてくださるとありがたいです

弾性エネルギー合 運動の法則 思考 145 滑車と力学的エネルギー図のように, なめらかに回 転する軽い定滑車にかけた糸の両端に, 質量 2.7kgの物体A と質量 2.2kgの物体Bを結ぶ。 A, B を同じ高さで支え, 静 かに支えを取ると, Aは下向きに, B は上向きに運動を始め る。はじめの位置を重力による位置エネルギーの基準とし, 2.0m 移動したときについて,次の各問に答えよ。ただし, 重力加速度の大きさを9.8m/s2 とする。 (1) A,Bの重力による位置エネルギーの和はいくらか。 (2) A, B の速さはいくらか。 [知識] 146. ばねの縮み図1のように, なめらか な水平面上にばね定数をのばねが置かれ,一 端が固定されている。 質量mの物体が速さ 2の他端に衝突した。 (1) ように, ばねがxだけ縮んでいる ばねの弾性エネルギーはいくらか。 体の速さはいくらか。 図2 2.0m いくらか。 妹の長さ- m 12.0m x 発展例題 9 ばねと力学的エ ばね定数kの軽いばねに質量 図(a)のように鉛直に立てる。 の物体を手でもって皿の上に 振動を始めた。 重力加速度の 問に答えよ。 (1) 物体が最下点にきた ら距離 x 下がっていた (2) 物体の速さが最大 1000000000円 例題! 物体は重力と 指針 され,その力学的エネルキ (1) 最下点での物体の速 (2) 物体の速さが最大 ギーも最大となる。 解説 (1) は 準にとる。 図(b) の 学的エネルギー保 0=-mgxo-

回答募集中 回答数: 0
物理 高校生

問5について ❶W+mgv"sinθ=Pとなるのは何故か ❷mgv"sinθは何を表しているのか 以上のことを教えていただけると嬉しいです🙇‍♀️🙇‍♀️

3 (配点33点) 図1のように,鉛直上向きで磁束密度の大きさがBの一様な磁場中に、2本のなめ らかな導体レール X Y が間隔で平行に置かれている。2本のレールの左側は水平で 同一水平面内にあり、途中から水平面となす角が9となるように傾斜している。 水平 部分の左端には,抵抗値R の抵抗 R, 切り替えスイッチ S,起電力 E の電池Eが接続 されている。 レール間には,長さ抵抗値R, 質量mの金属棒PP' がレールに垂直 に設置されている。 金属棒PP' は, レールと垂直な姿勢を保ったまま, レールから外 れることなくなめらかに動くことができる。 抵抗Rおよび金属棒PP' 以外の電気抵抗 は無視でき,また, 電流が作る磁場の影響も無視できるものとする。 重力加速度の大き さをg として,以下の問に答えよ。 R P [CL] Yt P' R, m B レール Y レール X 図 1 0 切り替えスイッチSをaにつなぎ, レールの水平部分で金属棒PP'に右向きの初速 度v を与えたところ,やがて PP'はレールの傾斜部分に達することなく, 水平部分で 静止した。 -37- 0 問金属棒PP' の速さがひとなったときを考える。このとき、金属棒PP' を P'′ か らPの向きに流れる電流の大きさをIとする。 (1) 金属棒PP' に生じる誘導起電力の大きさを, L, B, ” を用いて表せ。 VBl (2) 抵抗Rと金属棒PP' からなる閉回路について, キルヒホッフの第2法則を表 す式を書け。 R, I, L, B, v を用いて表せ。 VBl=2RI (3) 金属棒 PP' の運動方程式を書け。 ただし, PP' の加速度は右向きにαとし, a, I, l, B を用いて表せ。 ma = -IBl (4) 加速度αを, m, R, l, B, v を用いて表せ。 VBl VB²l² a = - VBR XBlx m [= 20 2R 2km 問2 金属棒PP' が動き出してから静止するまでの間に, 抵抗 R で発生したジュール 熱を求めよ。 mo² 次に, 切り替えスイッチSをbに接続し, 金属棒PP' をレールの水平部分で静かに 放す。 このとき, 金属棒 PP' は傾斜部分に達する前に一定の速さとなり, その後レー ルから離れることなく傾斜部分を運動するようになった。 問3 金属棒PP' の水平部分での一定の速さを求めよ。 = 問4 傾斜部分を運動し, 金属棒 PP' の速さがvとなったとき, PP' の加速度を求めよ。 ただし, 加速度は斜面に沿って下向きを正の向きとする。 問5 やがて金属棒 PP' は傾斜部分で一定の速さとなる。このときの電池の供給電力 をW, 抵抗 R と 金属棒PP' での消費電力の和をPとする。 一定となった速さを W, P, m, g, 0 を用いて表せ。 -38-

回答募集中 回答数: 0
物理 高校生

問5について ❶W+mgv"sinθ=Pとなるのは何故か ❷mgv"sinθは何を表しているのか 以上のことを教えていただけると嬉しいです🙇‍♀️🙇‍♀️

3 (配点33点) 図1のように,鉛直上向きで磁束密度の大きさがBの一様な磁場中に、2本のなめ らかな導体レール X, Y が間隔で平行に置かれている。 2本のレールの左側は水平で 同一水平面内にあり、途中から水平面となす角が0となるように傾斜している。 水平 部分の左端には, 抵抗値R の抵抗 R, 切り替えスイッチ S,起電力 E の電池E が接続 されている。 レール間には,長さ抵抗値 R, 質量mの金属棒PP' がレールに垂直 に設置されている。 金属棒 PP' は, レールと垂直な姿勢を保ったまま, レールから外 れることなくなめらかに動くことができる。 抵抗Rおよび金属棒 PP' 以外の電気抵抗 は無視でき,また, 電流が作る磁場の影響も無視できるものとする。 重力加速度の大き さをgとして、以下の問に答えよ。 a R b E E [OR] とも P P' R, m B レール Y CH レール X 図1 2 01 切り替えスイッチSをaにつなぎ, レールの水平部分で金属棒PP'に右向きの初速 度vo を与えたところ,やがて PP' はレールの傾斜部分に達することなく, 水平部分で 静止した。 2m1 問1 金属棒PP' の速さがとなったときを考える。このとき、金属棒PP' を P' か らPの向きに流れる電流の大きさをIとする。 (1) 金属棒PP' に生じる誘導起電力の大きさを, 4, B, v を用いて表せ。 VBl (2) 抵抗 R と金属棒 PP' からなる閉回路について, キルヒホッフの第2法則を表 す式を書け。 R, I, L, B, v を用いて表せ。 VBL = 2RI (3) 金属棒 PP' の運動方程式を書け。 ただし, PP' の加速度は右向きにαとし, m, a, Ⅰ l, B を用いて表せ。 ma = - IB l (4) 加速度αを, m, R, L, B, を用いて表せ。 _VBl VB22 a=-VBLXBlxmm 20 2R 2km 問2 金属棒PP' が動き出してから静止するまでの間に、 抵抗 R で発生したジュール 熱を求めよ。 2 /mao² 次に, 切り替えスイッチSをbに接続し, 金属棒PP' をレールの水平部分で静かに 放す。 このとき, 金属棒PP' は傾斜部分に達する前に一定の速さとなり,その後レー ルから離れることなく傾斜部分を運動するようになった。 問3 金属棒PP' の水平部分での一定の速さを求めよ。 F 問4 傾斜部分を運動し, 金属棒PP' の速さがvとなったとき, PP' の加速度を求めよ。 ただし, 加速度は斜面に沿って下向きを正の向きとする。 問5 やがて金属棒PP' は傾斜部分で一定の速さとなる。このときの電池の供給電力 をW, 抵抗 R と 金属棒PP' での消費電力の和をPとする。 一定となった速さを、 W, P, m, g, 0を用いて表せ。 - 38-

回答募集中 回答数: 0
物理 高校生

写真の(2)の赤文字にどうやってなるのかわかりません。 教えてください!

問題 145 148 小球の力学的エネルギーは保存される。 小球は,点Bから飛び出したあ と放物運動をする。 放物運動をしている間,重力によって鉛直方向の速 度成分は変化するが, 水平方向には力を受けないので, 水平方向の速度 成分は常に一定であり, 最高点に達しても小球の速度は0にならない。 解説 (1) 点Bでの速さを”として,点Aと点Bとで,力学的エネル ギー保存の法則の式を立てる。 地面を位置エネルギーの基準とすると, mgh₁ = 1/2mv -mv²+mgh₂ v=√2g (h₁-h₂) #430- ATO (2) 点Bから飛び出した直後の速度の水平成分は (図), v cos 45°=√g (h₁-h₂) 1 最高点Cでは、鉛直方向の速度成分は0 となるが, 水平方向の速度成分は式 ① と同じである。 したがっ て, 最高点Cでの運動エネルギーは, m (vcos 45°) ² = m(√g (h₁h₂))² = -1/2 mg (h₁h₂) (3) 最高点Cの地面からの高さをんとする。 点Aと最高点Cと 学的エネルギー保存の法則の式を立てる。 地面を位置エネルギーの基 準とすると, =1/12mg(hi-ha) +mgh h= mgh₁ (h₁ 45. 滑車と力学的エネルギー hi 2 mo TV-YOLD 白点Bから ら飛び出したと きの運動は,斜方投射に 相当する。 h₁+h₂pts 点Aでの運動エネルギ ーは0である。 vsin 45° TO B 145° v cos 45° M h₂ Caucos45 mos. TOS.0x8.0) 地面 | (2) 直角三角形 別解 この辺の長さの比からも、 点Bでの速度の水平成分 (vx) を求められる。 √2 h 45° Ora 200 AT 0:0x=√2:1 vx=v/√√2 =√√gh₁ h₁)

回答募集中 回答数: 0
物理 高校生

物理の問題です。写真の(エ)の問題で私はmgx_2=1k(x_2-L)^2/2と考えましたが、解答は写真の通りでした。私の方法では答えを出すのが困難なため3枚目の写真の通りにやるべきなのでしょうか?

183. ゴムひもによる小球の運動 次の文中の□を埋めよ。 図のように,屋根の端に質量の無視できるゴムひもで小球をつな いだ。小球を屋根の位置まで持ち上げてから,落下させたときの運 動を考える。 ゴムひもの自然の長さはL, 小球の質量はmである。 図のように鉛直方向下向きにx軸をとり, 屋根の位置を原点とする。 使用するゴムひもは, 小球の位置xが x≦L のとき, ゆるんだ状態 となり小球に力を及ぼさない。 一方,x>Lのとき, ゴムひもは伸 びて張力がはたらき, ばね定数kのばねとみなせる。小球は鉛直方向にのみ運動し,地 面への衝突はないものとする。 重力加速度の大きさをgとする。 小球を屋根の位置(x=0) から静かにはなして落下させた。x=L の位置での小球の 速さはアである。 小球にはたらく張力の大きさが重力の大きさと等しい瞬間の位 置を x1 とすると, x=イである。 x = x1 での小球の速さは,v=ウであ る。さらに小球は下降し,最下点に到達した後, 上昇した。 最下点の位置を x2 とすると, X2=エである。 また, 最初に x1 を小球が通過してから最下点を経て、再び xx にも どってくるまでに要した時間はオである。 [18 明治大] 175,176 JostiotutEn II Ahi/ t エ 1-412. I/1. 屋根 -0 x

回答募集中 回答数: 0