学年

教科

質問の種類

物理 高校生

84番についてです。p1は6cmでp2は7.5cmだから同一の深さではないと思います。なぜ同一の深さになるのか教えてください

よ。 90 82 あらい斜面上の運動 傾きの角が30° のあらい斜面 上に質量 5.0kgの物体を置き, これに糸をつけ, 斜面に平行 に上向きの力を加えた。 物体と斜面の間の動摩擦係数を 重力加速度の大きさを9.8m/s² とする。 √3 130 基 (1) 物体が斜面上方に一定速度 3.0m/sで動いているとき, 糸の張力の大きさは何Nか。 (2) 次に,糸の張力の大きさを60N にすると, 加速度の大きさは何m/s2 になるか。 例題 17,89,90 83 水圧 図のように, 高さ 底面積Sの円柱形の物体を、 そ の上面の水面からの深さがdとなるように水中に沈めた。 大気圧を Do, 水の密度をp, 重力加速度の大きさをgとする。 (1) 物体の上面が受ける圧力か と下面が受ける圧力を求めよ。 (2) 物体の上面が受ける力と下面が受ける力の大きさの差を求めよ。 84 液体の圧力 一様な太さのU字管に入れた水と油が図 の位置でつりあっている。 水と油の境界面から液面までの高さ T はそれぞれ6.0cm,7.5cmである。 水の密度を1.0×103kg/m² 6.0cm として,油の密度を求めよ。 水 油 86 浮力■ 質量 m[kg], 密度ρ [kg/m²] の物体を, ばね定数k [N/m] のばねの先端に取りつけ, 密度 po [kg/m²] の液体に完全に沈めたところ, ばねが自然の長さから伸びた状態でつりあった。 重力加速度の大きさを g [m/s²] とし, ばねの質量および体積は無視できるものとする。 (1) 物体が受ける浮力の大きさF [N] を求めよ。 (2) ばねの自然の長さからの伸び x [m] を求めよ。 水面 d 85 浮力 密度が一様な物体を水(密度po [kg/m²]) に浮かべたところ, 物体の仁 積 V[m²] の3分の2が水面より下に沈んだ。 重力加速度の大きさをg [m/s'] とする。 (1) この物体の密度ρ [kg/m²] を求めよ。 (2) 力を加えて物体全体を水面より下に沈めたい。 必要な力の大きさ / [N] を求めよ。 例題18 例題 1893 7.5cm ◆ 87 空気の抵抗を受ける運動■質量m[kg] の小球が空気中を落下す るとき、空気の抵抗力は小球の速さ”に比例し, kv [N] であるとする(k は比例定数)。重力加速度の大きさを g [m/s'] とする。 (1) 小球の速さが [m/s ] である瞬間の加速度の大きさ a [m/s ] を求めよ。 [00000000 of C

回答募集中 回答数: 0
物理 高校生

2番からお願いします。答えは貼っている通りです

やや 471. くし形電極のコンデンサー■ 図のように,面積がSで , 同じ形の4枚の導体平板 I,Ⅱ, ⅢI, ⅣV を互いに平行に並べ, 「 I I と ⅢI,ⅡI' と Ⅳ をそれぞれ導線で接続する。 IとⅡIの間隔, およびⅢIとⅣの間隔はD, ⅡIとⅢの間隔はdである。 ⅠとⅢI の電荷の合計と,ⅡIとⅣVの電荷の合計は,互いに逆符号で同 じ大きさである。 導体平板間は真空であり,真空の誘電率を ED とする。次の文の()に入る適切な式を答えよ。 IのⅡに面した側の表面にある電荷をQ(>0) とする。 ⅠとⅡIの間の電場の強さは ( 1 )である。 ⅡIとⅢの間の電場の強さは ( 2 ) ⅡIのⅢに面した側の表面にある 電荷は( 3 )である。 さらに,ⅢのⅣに面した側の表面にある電荷は ( 4 )である。 以上から,IとⅢを一方の極板とし, ⅡIとⅣを他方の極板としたコンデンサーの電気容 量は( 5 ) となる。 (12. 慶應義塾大改) ヒント 469 (1) 極板 AD からなるコンデンサーと, 極板 BD 470 (1) 金属板内はどこも等電位であり, 金属板を挿 471 IとⅢIIとIVはそれぞれ電位が等しく, IとⅡ IV SD D di D コンデンサーの並列接続とみなせる。 後で極板間の電圧は一定である。 1. ⅡIとⅣの電位差は等しい。

回答募集中 回答数: 0
物理 高校生

物理の問題です 特に苦手な電流なのでお時間ある方教えて下さると嬉しいです。よろしくお願いします(><)

以下の各問に答えなさい。 途中経過が略されている場合、 単位の取扱が不適切な場合には減点する。 2023.4.20/21 第1回レポート 1. 右図の様な断面積Sの導線の軸方向に電場を与え たとする。このとき、電荷e (e>0) の電子が、軸 負方向に一定の速さで運動したとする。 導線の伝 導電子密度をn とするとき、以下の問に答えなさい。 I (1) 時間間隔 At の間に導線の断面 A を通じて運ばれる電荷の大きさAQ を、 S, n, e, v, At 等を用い て表しなさい。 2. 等しい抵抗をもつ12本の抵抗を、 右図のように接続した。 (1) D, F 間の合成抵抗を求めなさい。 (2) A, Ⅰ間の合成抵抗を求めなさい。 (2) 導線を流れる電流の大きさを、 S, n, e, 0, At 等を用いて表しなさい。 次に、 上の導線が断面積 S = 1.0mm²の銅製の導線であり、流れた電流が I = 1.0A であったと する。このとき以下の各問に有効数字2桁で答えなさい。 ただし、 銅の原子量は64 (すなわち、 銅 1mol あたり 64g)、密度はp=8.9x103kg/m3である。 (3) 銅原子1個の質量を求めなさい。 ただし、 アボガドロ数は NA=6.0×1023 である。 (4) 銅 1.0m² の質量m を求めなさい。 (5) 銅 1.0m²に含まれる銅原子の数を求めなさい。 (6) 銅原子1個が自由電子1個を放出すると仮定して、 銅の伝導電子密度 n を求めなさい。 (7) を求めなさい。 ただし、 e = 1.6 x 10-19C である。 10 S 1₁ 1₁ 図1 ヒント: 下図のように起電力 Vの電源を接続したとき、 電流Iが流れたとする。 (1) 回路の対称性から、 例えば、 図1のように、 電流 I 〜 Is と推定することができる。 対称性から、 B点、 E点 H点の電位は? すると、 Is が求まり、I2がIⅠ を用いて、 また、 Is が I を用いて表される。 D点にキ ルヒホッフの第1法則を、 閉回路 DABCFED にキルヒホッフの第2法則を用いると、 L1, I4 を I で表す事 ができる。 閉回路 PQDEFP にキルヒホッフの第2法則を適用することで、 R =V/Iが求められる。 (2) 回路の対称性から、 例えば、図2のように、 電流 I1, I2, Is と推定することができる。 このとき、A点、 B点でキルヒホッフの第1法則、 閉回路BCFE でキルヒホッフの第2法則を用い、 電流 In, In, Is を I を用 いて表す。 閉回路 PQADGHIP にキルヒホッフの第2法則を適用することで、 R=V/Iが求められる。 I A D 47 図2 E 40 11 P

回答募集中 回答数: 0
物理 高校生

Ⅰ(1)について. ドップラーの式を使って解き,答もあたりましたが,疑問があります.問題文に"われわれから速さv[m/s]で遠ざかっている"とありますが,これは相対的な速度のことだと思います.そうすると,ドップラーの式:"f'={(V-v1)/(V-v2)}f"に当てはめ... 続きを読む

Ⅰ 宇宙には活動的中心核をもつ銀河が数多く知られている。 それらの中心部には小サイズで巨大質量の 天体があり、その周りを厚さの薄い分子ガス円盤が高速回転している姿が明らかになってきた。 比較的穏やかな渦巻き銀河M106 は, われわれの銀河から遠く離れていて, 数100km/s もの速さで 地球から後退している。その中心付近から放射されている水蒸気メーザー (波長 入 = 0.0135m) の電波 の観測が野辺山の電波望遠鏡で行われた。 その結果, 図1のようにこの銀河の後退運動によるドップラ 一効果でずれた波長 入 〔〕 付近に数個の強い電波ピークが観測された。 その波長域の最小波長 入 〔m〕, 中心波長 入 〔m〕, および最大波長袖 〔m〕 は -=0.0016, th No -=-0.0020, (19510円)*(30 で与えられることがわかった。 1 No ic 図 1 Ac-do Zo λ2-10 20 -=0.0052 水蒸気メーザーで 輝くスポット 回転 回転 分子ガス円盤 中心天体 図2 (1) 波長 〔m〕 の電波を放射する天体が, われわれから速さ 〔m/s] で遠ざかっているとき,われわ れが観測する波長が入[m] であるとする。 vを入, 入および光速 c を用いて表せ。 (2)c=3.0×10°m/s として, 図1の波長 A, Ac, A に対応するガス塊のわれわれに対する後退速度 ひ1, vc, v2 [m/s] を ] x10m/sの形で求めよ。 には小数第1位までの数字を入れよ。 (3) ひ-vc, |v-vel の値を求めよ。 TEX Ⅰ (3) より | ひ-vc|=|vz-vel となるが, この結果は複数の放射源 ( ガス塊)が全体の中心の周りを高 速回転していることを暗示している。 ⅡI 中心波長 Ac 付近で明るく輝く複数のガス塊の運動の時間変化が調べられた. その結果, これらのガ ス塊は中心から薄いドーナツ状分子ガス円盤の内側端までの距離 Ro=4.0×10m を半径とする円軌道 を一定の速さで回転しているとするとよく理解でき, その速さは Ⅰ (3) で求めたガス塊の後退速度の差 Vo(=|u-vc|=|02-vel) と一致することがわかった。 図2に回転する分子ガス円盤の概念図を示す。 ただし、 万有引力定数をG[N・m²/kg ] とする. (1) 質量M(kg) の中心天体の周りを質量のずっと小さい (m[kg]) ガス塊が半径R [m]の円周上を速さ V [m/s] で万有引力による円運動をしているとき, ガス塊の円運動の運動方程式を記せ。 ●解説 I (1),(2) 天体の出す電波の振動数をfo (=clio) とすると, 長さc+vの 中に fo波長分の振動が含まれるから 研究 λ=c+v_c+v., -.Ao fo (3) Ⅰ(2)の結果より 2-20 20 C この結果に、問題文で与えられた 入=入, Ac, i に対する (^-入o)/20 の値,および c=3.0×10°m/s をそれぞれ代入すると ひ=(-2.0×10-3)×(3.0×10°)= -6.0×10m/s ve=1.6×10-3)×(3.0×10°)=4.8×105m/s v2=(5.2×10-3)×(3.0×10°)=15.6×10m/s ドップラー効果◆ STEFON 波源が速さで後退すると,cの長さに含まれていた波がc+v の長さ に含まれることになって、波長が伸びる。(単泉) ところで, 図のように, ある点を中心に円運動をしている天体から出る 光 (電磁波)を十分に遠方から観測する場合, 中心天体の後退速度をv, ガ ス塊の円運動の速さをVとすると, 点a, c から出る光の後退速度はvc =v, bから出る光の後退速度は dから出る光の後退速度は V, v2v+V である。ゆえに V1-Ve=-V, #PED WAXXENT v2-vc=V となる。逆に,ひ-vc|=|v2-vel であれば,ガス塊の運動が円運動であることが暗示される。 なお、M106 の後退速度はせいぜい106m/s程度で,光速の1/100 以下であるから,相対論的なドップ ラー効果の式ではなく,普通のドップラー効果の式を用いてよい。 観測者 v-v b d V FV v+V a

回答募集中 回答数: 0
物理 高校生

物理の課題です(><) 1番だけでもすごく助かります! 特にこの単元は電流で苦手なところなので、時間のある方、教えていただけると嬉しいです。

以下の各問に答えなさい。 途中経過が略されている場合、 単位の取扱が不適切な場合には減点する。 2023.4.20/21 第1回レポート 1. 右図の様な断面積Sの導線の軸方向に電場を与え たとする。このとき、電荷e (e>0) の電子が、軸 負方向に一定の速さで運動したとする。 導線の伝 導電子密度をn とするとき、以下の問に答えなさい。 I (1) 時間間隔 t の間に導線の断面 A を通じて運ばれる電荷の大きさ AQ を、 S, n, e, v, At 等を用い て表しなさい。 2. 等しい抵抗をもつ12本の抵抗を、 右図のように接続した。 (1) D, F 間の合成抵抗を求めなさい。 (2) A, Ⅰ間の合成抵抗を求めなさい。 S (2) 導線を流れる電流の大きさを、 S, n, e, v, At 等を用いて表しなさい。 次に、 上の導線が断面積 S = 1.0mm²の銅製の導線であり、 流れた電流が I = 1.0A であったと する。このとき以下の各問に有効数字2桁で答えなさい。 ただし、 銅の原子量は64 ( すなわち、 銅 1mol あたり64g)、密度はp=8.9x103kg/m3である。 (3) 銅原子1個の質量を求めなさい。 ただし、 アボガドロ数は NA=6.0×1023 である。 (4) 銅 1.0m² の質量 m を求めなさい。 (5) 銅 1.0m² に含まれる銅原子の数を求めなさい。 (6) 銅原子1個が自由電子1個を放出すると仮定して、 銅の伝導電子密度を求めなさい。 (7) v を求めなさい。 ただし、 e = 1.6 x 10-19C である。 図1 P A D 図2 B ヒント: 下図のように起電力 Vの電源を接続したとき、 電流Iが流れたとする。 (1) 回路の対称性から、 例えば、図1のように、 電流 ~ Is と推定することができる。 対称性から、B点、 E点 H点の電位は? すると、 Is が求まり、 I が I を用いて、 また、 Is が I4 を用いて表される。 D点にキ ルヒホッフの第1法則を、 閉回路 DABCFED にキルヒホッフの第2法則を用いると、L1, I4 を I で表す事 ができる。 閉回路 PQDEFP にキルヒホッフの第2法則を適用することで、 R = V/I が求められる。 (2) 回路の対称性から、 例えば、図2のように、 電流 I1, I2, Is と推定することができる。 このとき、 A点 B点でキルヒホッフの第1法則、 閉回路 BCFE でキルヒホッフの第2法則を用い、 電流 I, I2, Is を I を用 いて表す。 閉回路 PQADGHIP にキルヒホッフの第2法則を適用することで、 R=V/Iが求められる。 V 1 F ▬

回答募集中 回答数: 0