学年

教科

質問の種類

物理 高校生

ここはなんでkQ/xとの差ではなくて、kQ/aをつかうのですか?

次の文中の口に適切な数式または数値を入れよ。ただし,数式は,ko, a, b, x, Q, q *100.〈帯電した導体がつくる電場) のうち必要なものを用いて答えよ。 ガウスの法則によると,任意の閉曲 面を貫く電気力線の密度は電場の強さ に等しい。例えば、真空中で点電荷を 中心とする半径rの球面を仮定して考 えれば、点電荷から出る電気力線の本 数を球の表面積でわった値が球面にお ける電場の強さとなる。そのため, 電 気量q(q>0)の点電荷から出る電気力線の本数nは, 真空中でのクーロンの法則の比例定者 koを用いて,n=ア]と書ける。 図1のように,真空中に半径aの金属球Mがあり, Q(Q>0) の電気量をもつように帯電さ せた。金属球Mの中心Oから距離xだけ離れた点における電場の強さE, 電位Vについて考 える。ただし,電位Vは無限遠方を基準とする。 xこa のときは,金属球Mから出る電気力線は金属球Mの中心0から放射状に広がると考 えられるため,電場の強さEは, E=イ]とわかる。 また, その点の電位Vは, V=ウ]である。 また,x<a のときは, 導体内部の電位は導体表面の電位と等しく, 導体内部に電気力線 が生じないことから, E=[xエ], V=[オ]となる。 図2のように,内半径6, 外半径Cの金属球殻Nがあり,-Qの電気量をもつように帯電 させた。このとき,金属球殻Nが球殻内部の真空の空間につくる電場は,内部に発生する電 気力線のようすを考えると0である。 次に,図3のように,真空中で,金属球殻Nで金属球Mを囲い,金属球殻Nの中心O' が金 属球Mの中心Oに一致するように配置した。ただし, aくb<c であり,金属球Mの電気量は Q.金属球殻Nの電気量は -Qのままであるとする。このとき,中心Oから距離 x(a<xくb)だけ離れた点における電場の強さ E'は,金属球 M, 金属球殻Nがそれぞれ単 独でつくる電場を足しあわせた合成電場の強さであるので, E'=[Xカ]である。また、金 属球殻Nに対する金属球Mの電位 Vssa は,金属球殻Nの内部には電気力線は生じないので、 Vsa=キである。 金属球Mと金属球殻Nは,電位差 Visaを与えればQの電気量が蓄えられるコンデンサー とみなすことができる。このコンデンサーの電気容量Cは、C=[ク である。 金属球殻N 全属球M 図2 図3 図1 (20 関西大) A101 世

回答募集中 回答数: 0
物理 高校生

(d)から教えてください > <

続いて、スイッチ S」 を開いた。その後, 図2のように、コンデンサー C」の機 板 AB 間に,断面の形が極板 A, Bと同じで, 厚さが AB間の距離の半分であり、 比誘電率が e, (E,>1) の誘電体を極板Aに接するように挿入した。ただし、コン 問4 デンサー C」の極板問隔をdとし、空気の比誘電率を1とする。以下の文章中の空 欄 と には適切な数式を記入し, (b)と(c)では{ }内から適 切な語句を選び, その番号を記入せよ。 A d 誘電体 II I 0 B Vo 図2 誘電体を挿入する前の極板 AB間の電位差をV。とすると,このときの AB 間の 電場の大きさE。は, E。= と表せる。その後,誘電体を挿入すると,誘 電体が入っていない領域Iの電場の大きさは,(b) { ① E。よりも大きくなる ②E。 よりも小さくなる(3。と等しい}。また, 誘電体が入っている領域IIの電場の 大きさは,(c){① E,よりも大きくなる(2 E。よりも小さくなる③ E, と等しい}。 このとき,極板 AB間の電位差は, Er, V。 を用いて, となる。 問5 さらに,コンデンサー C2の極板間隔を半分にしてから, スイッチS」 を閉じた。 このとき,回路には電流は流れなかった。コンデンサー C」 に挿入した誘電体の比 誘電率 e,を求めよ。 問6 コンデンサー C, の極板Bの位置を原点として, Bから極板 Aの向きにx軸をと る。極板Bの電位を0としたときの, AB間の位置×における電位を表すグラフを描 け。ただし,x=dとx=dでの電位の値がわかるように, 問4の V。を用いて示せ。 解答用紙には問4で誘電体を挿入する前の電位の様子が太い破線で描かれている。 38 12

回答募集中 回答数: 0
物理 高校生

物理の波についての問題です。 写真の④番についてなのですが、青で印をつけた所の式の意味が分からないです。なぜいきなりこの式変形になったのでしょう。夜行性なので反応早いと思います。

その波高は 5m,速さは 65km/hにもなる。 物理 基礎 STEP 3 解答編 物理 p.115~116 |220 波の重ね合わせ 次の文の「 数値を入れて文章を完成させよ。 右上図のように, ェ軸上の原点O(r=0) と点Q(z=D2L)に同位相で単振動をする波 源があり,それぞれから出される振幅 A, 振動数fの正弦波が, 工軸上を速さゅで互い に逆向きに進み, OQ間で重なった。このとき, 点P(位置x)における時刻!での波源 0からの波による変位 ypo は,次式で表される。 に数式または0 干 2L の く P Q fx V=fa Iro=A sin 2f(t-ト 20 (fe-) v f この波の波長は0である。一方, 点Pにおける時刻tでの波源Qからの波による 変位 yro は, yro= 波による変位は2つの三角関数の和で, yp= ③] と表される。このとき, 点Pにおける両波源からの波の合成 と表される。ここで、 A-B COS 2 A+B sin A + sin B =2sin を用いた。この式より, 時刻によらず変位0の 2 位置があることがわかる。v,f, Lの間に,v=fL という関係があるとすると,OQ間 にそのような位置は 個存在する。 Chapter 221 波の反射と定常波 右図のように, 媒質が.r軸 に沿って置かれており, 原点Oに波源がある。 エ=0 壁 16 波I 世所の 告器

回答募集中 回答数: 0
物理 高校生

1枚目のピンクで丸している問題(ア)を 教えてください。 2枚目が解説です。

~に]には指定された選択肢か い 1 ら最も適切なものを1つ選べ。重力加速度は一定で,その大きさをgとする。 次の問いにおいて,天井と床は,いずれも剛体であり,固定されているものとする。ばわ は,質量が無視できるものとし,ばね定数がk,自然の長さが Loであり,まっすぐ伸び縮み するものとする。ブロックは, 質量が mで, 大きさが無視できるものとし,その運動は、同 一直線上から外れないものとする。 図1のように,天井からばねをつるし, ばねにブロックを取りつけた。 ばねの自然の長さを保つようプロックを手で支え,静かに手をはなした後 ばねが最も伸びるまでの運動を考える。ブロックにかかる力は, 重力とば ねの力のみであるとする。図2は,ばねが最も伸びる途中までの, ばねの 長さと,プロックにかかる重力(点Aと点Cを通る太線)とばねの力 (点B と点Eを通る太線)の関係を示す。 ブロックにかかる重力とばねの力がつりあうとき,ば ねの長さはい]である。ばねの長さが Loからいに なる間に重力がブロックに行った仕事の大きさは, 図2 ろの面積と等しい。また,この間にばねの力が プロックに行った仕事の大きさは,図2の は]の面 積と等しい。したがって,ばねの長さがいのとき,ブロ ックの運動エネルギーは[ア]である。ばねがさらに 伸び,プロックの運動エネルギーが0になるのは, ばね の長さがに]のときである。 次の文章を読み, ア]に適切な数式を記せ。 天井 ばね ブロック 図1 ブロックにかかる力カ (鉛直上向きが正) Lo い の ばねのカレ傾きん ;E B D 0- ばねの長さ A重力 C! 図2 い と に |の選択肢 の Lo+ mgk の Lo+mgk 3 Lo+2mgk mg O Lo+ 2k 2 6 L+ mg 6 Lo+ 2mg k ろ の 三角形BED は |の選択肢 2 四角形 ABDC 3四角形 ABEC

回答募集中 回答数: 0