学年

教科

質問の種類

物理 高校生

この問題の(き、く)の部分の解決で、何故x軸方向にE/Bで移動する観測者と分かるのですか? どなたか教えて頂けると助かります

VI. 次の文を読み、下記の設問1・2に答えよ。 解答は解答用紙の所定欄にしるせ 14 2022 年度 物理 電場や磁場の影響を受け, y 図1のように,y 軸方向正の向きに強さE の一様な電場がかかっているとする。 電気量 g (g > 0)の荷電粒子が時刻t = 0 に原点 0 から初速度 0(0) で運動を開始した。 時刻でのこの粒子の位置は (x,y)=(あ, である。 である。 ・図2のように、xy平面に垂直に、紙面の裏から表に向かって, 磁束密度B の一様な 場がかかっているとする。 質量 m, 電気量 g (g > 0) の荷電粒子が時刻 t = 0 に隠さ 0から初速度v = (u,0)(v>0) で運動を開始した。 この粒子が運動開始後に 初に y 軸を通過するときの時刻はt= E V y 平面上を運動する荷電粒子を考える。 0 STUSKO 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy平面に垂直に紙面の から表に向かって、 磁束密度B の一様な磁場の両方がかかっているとする。 質量m, t 気量g(g> 0)の荷電粒子が時刻t = 0 に原点Oから初速度 (0,0)で運動 開始した。この粒子の x 軸方向,y 軸方向の速度をそれぞれ ux, vy, 加速度をそれぞ = Q1 Q とすると,運動方程式は 図1 X (x,y)=(0, B [O うで,そのときの座標は え) V い y 図2 B 立教大 0 図3 とな で運 で道 道を Vo 1. 2.

回答募集中 回答数: 0
物理 高校生

大阪市立大学 物理 2019 問5ですが、万有引力による位置エネルギーは考えなくてよいのですか? また慣性力を使っているので、慣性力のした仕事なども考える必要があると思ったのですがどういうことですか?

-k) 大-理系前期 のをすべて求 00/90 P, 辺BCを あるとき,P OLD 泉 l を考える. A M , β として, こで囲まれた 大阪市立大理系前期 物理 (2科目 150分) 第 1 問 (35点) 2019年度 物理 21 図1のように、地球の中心をEとし, 球形のカプセルの中心Oが,Eを中心とした等速 円運動を行っている.ここで, カプセルの重心はOと一致している. EO間の距離はであ が中心に集まった場合と等しくなることを用いて, 以下の問いに答えよ. る。 地球の質量をM,万有引力定数をGとし, 地球がおよぼす万有引力は、地球の全質量 問1 カプセルの中心の速さ, 等速円運動の周期, および角速度を求めよ. 図2のように,EとO を結ぶ直線を軸とし,Oを原点とする.EからO に向かう向き をェ軸の正の向きとする. カプセルの中に,質量の無視できる長さ 21 の細い円筒を設置し た。ここで、円筒の端はæ= -l およびæ=lであり, 円筒の中心軸は,常に軸と一致さ せている. 質量mの小球を、円筒内のx=xo (No > 0) に静かに置いたところ,軸の正の向きに動 き始めた.ここで,小球は円筒の中を, x軸にそって, なめらかに動くことができる.小球 の質量はカプセルの質量に比べて十分小さく,また, カプセルと小球間に働く万有引力は無 視できるとして、以下の問いに答えよ. 間 2小球が位置π (20≦x≦り)にあるとき、小球に働く万有引力のェ成分を求めよ。た だし,1と考え,|a| ≪1 に対する近似式 =(1+α) = 1 - na を用 いよ. (1+a)^ 問3 円筒とともに回転する観測者からみたとき, 位置にある小球に働く力の成分F を の関数として求めよ。 ただし、 問2の結果を用いよ。 また, 解答用紙のグラフ に,Fをæの関数として描け.

回答募集中 回答数: 0
物理 高校生

(3)のニが分かりません。 普通に1×Qじゃだめなんでしょうか?

166 2021年度 物理 次の文章を読み, ほ 答欄にマークせよ。 い 立命館大学部個別 (理系) イ に適切な数値を解答欄に記入せよ。 また, には指定された選択肢からもっとも適切なものを一つ選び、解 図1のように xyz軸を取り, 一辺の長さがLの正方形で厚さが無視できる導体板 A,B をそれぞれx = 0,x=d (ただしd>0)の位置に固定した。 導体板Aは 接地されており, 導体板Bには電気量Q(ただし Q > 0) の電荷が与えられてい る。また、以下の〔1〕〔2〕〔3〕 において、導体板や誘電体の中心は常にx軸 上にあり, 正方形の各辺はy軸、z軸と平行であるとする。 真空の誘電率をe とし, Lはdよりも十分大きいものとする。 ろ 〔1〕 図1において, 座標 (d-r,r, 0) に点P, 座標 (d,r,0)に点Rを 取る(図2)。ただし,0<r<d0<r</1/2であるとする。点Pでの電場 の向きは であり,大きさは である。 このとき, 導体板B の 電位を Vo とすると, Vo = は であり, 導体板 A,Bの間に蓄えられる静 電エネルギーを U とすると, U = に である。 また, 外力を加えて電気 量 g の点電荷を図2の原点Oから点R まで線分OR上をゆっくりと動かすと き, 外力がする仕事は ほ に等しい。ただし, |q| はQに比べ十分小さい とする。 〔2〕 図1において, さらに導体板 A,Bと同じ形状, 大きさを持ち,接地された 3 導体板Cをx=no dの位置に固定した (図3)。 十分な時間が経過した後,導 2 体板 B の電位は ×V となる。 また, 導体板 A,Bの間に蓄えられる 静電エネルギーは ×U となり,導体板 B, Cの間に蓄えられる静電 ×U となる。 エネルギーは 〔3〕 図1において、 今度は一様な比誘電率3を持ち, 断面が一辺の長さLの正 d 方形で厚さの誘電体 (絶縁体)で導体板 A を完全に覆った (図4)。 誘電体 では、誘電分極によってその表面に電荷(分極電荷)が現れ、誘電体内部の電 場を弱めるはたらきをする。 比誘電率を考慮すると,図4の「表面D」に現 れる分極電荷の電気量は = ×Qとなることがわかる。 また, 十分な時

未解決 回答数: 1
物理 高校生

この問題に全く手がつけられません。

1. 図1および図2の破線は、静止した観測者からみた小球の運動の様子を表している。 いずれの場合も、小球の質量をmとし、摩擦や空気抵抗は無視できるものとする。 Y r CC 図1 図1は, 水平なæy平面上での等速円運動を表している。 円運動の中心0と小球の 間は伸び縮みしない軽い糸で結ばれており、円運動の半径は, 速さはVである。 以下の問いに答えよ。 小球が図中の点Pに達した瞬間に、小球にはたらく力の大きさを答えよ。 問aの力の向きを、 解答用紙の図中に,点Pを始点とする矢印で示せ。 AZ 図2は、水平面と角度をなす向きに, 時刻 t = 0 に速さVで小球を投げ上げたと きの運動を表している。 また, 投げ上げた地点を原点とし、水平方向に軸、鉛 直上向きに軸をとる。 小球の運動はz 平面内に限られている。 重力加速度の大き さを」として、以下の問いに答えよ。8合お問 図2 TURENS c. 小球が最高点 Qに達した瞬間に、小球にはたらく力の大きさを答えよ。 d. 小球が最高点 Q に達する時刻t を求めよ。 e. 小球の速度の成分 成分をそれぞれジェ, ひで表す。 時刻 tがO≦t≦2to の範囲で,とも,および, vx ともの関係を表すグラフを描け。

未解決 回答数: 0