学年

教科

質問の種類

物理 高校生

(4)(5)について質問です (4) バネが縮んでから、伸びたばねによって押し返されるところを注目するのはなぜですか?(自分はバネに届く前とd2縮んだ場面について考えようとしていました。) なぜ運動方程式で解こうと思うのですか? エネルギーでは解けないのですか? (5... 続きを読む

〔8〕 2008 山形 RS 上には,質量Mの台が垂直面 QR に接して置かれていて、台の上面が水平面PQと同一平面 図のように、水平面PQ上に、大きさの無視できる質量mの小物体が置かれている. 水平面 置かれている. ばね 1, ばね2ともにばね定数はkとし, 質量は無視できるとする. また, 水平面 になっている. 水平面 PQ 上にはばね1が, 水平面 RS上にはばね2が, 一端を壁に固定されて と小物体,台の間の摩擦は無視し,重力加速度の大きさをgとする. vo 小物体をばね1の固定されていない端に接触させ,自然長からd, だけ縮めぞ静かに手を離し た。 ばねが自然長に戻ったところで、小物体はばね1から離れ,水平面 PQ 上を右向きに速さ で運動した. Q(1) vo をm, k, d を用いて表せ. その後,小物体は速さで台に乗り移り、同時に台も動きはじめた. 小物体が台上を時間Tの 間に,台に対して距離だけすべった後、 小物体と台は一体となって水平面 RS 上を右向きに一 定の速さ △ (2) T, V をそれぞれ vo, m, M, g, μの中から必要なものを用いて表せ. (3) を vo, m, M,g,μ を用いて表せ. 台は小物体を乗せたまま, 速さ V でばね2の固定されていない端にあたった.台があたる前の ばね2は自然長であった.その後, ばね2は自然長から最大d2だけ縮み,この間, 小物体は台上 をすべらなかった.ここでは、ばね2が自然長からd2だけ縮むまでの運動を考える. 小物体と台 の間の静止摩擦係数を μo とする. (4) ばね2が自然長からæ (0<x< d2) だけ縮んだとき, 小物体と台の間にはたらく静止摩擦力 の大きさを,m, M, k, æ を用いて表せ. (5) ばね2d2だけ縮むまでの間, 小物体が台上をすべらないためには, ばね1の縮みをい くら以下にしなければならないか.m, M, k, g, μo を用いて表せ. ばね 1 100000001 P 小物体と台の間の動摩擦係数をμとする. で運動した。 小物体 a R 台 2 70000000 S

回答募集中 回答数: 0
物理 高校生

マーカーで印をしたところの解説がイマイチよくわかりません。グラフの意味もあまりピンとこないです。 詳しく教えてほしいです。 また、できれば別解があれば教えてほしいです。

十反 初理 う 支点0(ビン) の た。I。の最大値はいくらか(キ)。また ω を R, L, Co. Ve のうち必要なものを使って表 せ(ク)。 のの 棒A の 棒B (配点率 33 %) の ao 小球B OP の 小球A はう R 図3 Og C= 子の II 図1に示すように,抵抗値 R の抵抗,自己インダクタンス Lのコイル,電気容量 C の平 bo かをつ 行板コンデンサー,スイッチ Sからなる回路がある。平行板コンデンサーは極板間の距離 x 図1 を変えることができる。極板問距離 x = d のときの電気容量を C = Co とする。最初,コン デンサーに電荷は蓄えられておらず極板間距離は x =d であり,スイッチは開いている。 テの物 -OP まず,端子 a-b 間に起電力 E の直流電源を接続した(図2)。抵抗に電流が流れ始め,その 後十分長い時間が経過すると,電流が流れていないとみなせるようになった。 R (1) 電流の最大値はいくらか(ア)。また最終的にコンデンサーに蓄えられた電気量はいくら 99 S E- か(イ)。 Cニ 次に,直流電源をはずしてスイッチを閉じたところ,コイルに振動電流が流れる現象(電気振 bo 動)が観測された。 (2) 電気振動の周期 T はいくらか(ゥ)。またコイルを流れる電流の最大値はいくらか(エ)。 図2 その後,端子 a-b 間を導線でつなぐと抵抗に電流が流れ始め,十分長い時間が経過した後, 電流が流れていないとみなせるようになった。 P (3) この間に抵抗でジュール熱として消費されたエェネルギーはいくらか(オ)。 R V。 今度は,端子 a-b 間の導線をはずしスイッチを開いて,端子p-q 間に電圧の実効値 V。 be の交流電源を接続した(図3)。抵抗を流れる電流の実効値を I。として,以下の操作により電源 の角周波数 を推定することを考える。 (4) コンデンサーの極板をゆっくりと動かし極板間距離 x をdよりも小さくしたところ, 動 C = bo かす前より I。が大きくなった。このことから推定される は問い(2)の電気振動の角周波 図3 数より大きいか小さいか。 ω と問い(2)の T の関係を不等式で示せ(カ)。 としたところで I。が最大となっ 4 (5) さらにコンデンサーの極板をゆっくりと動かしx=

回答募集中 回答数: 0
物理 高校生

物理第一学習社電磁気章末問題 1〜3を教えてください!お願いします!

1盛場中の電流が受ける力●磁東密度2.0Tの鉛直上 向きの一様な磁場の中で,図のように,水平となす 張る。質量0.50kgの金属棒 PQを導線に垂直に渡 3ホール効果 金属などの中を流れる電流に対して、垂直に磁場をかけると、電流と磁 の両方に垂直な方向に起電力が生じる。この現象を,ホール効果という。 た,ホール効果によって生じる電圧を,ホール電圧という。 ホール効果の説明 電流I(A)が流れている金属板に,電流の向きと垂直に破事を。 B(T]の磁場をかける。このとき, 金属板の内部を運動している電荷 -e[C), 速さ。 [m/s)の自由電子は,ローレンツカ evB(N]を受け、運動の向きが曲げられて面p。 集まる(図因a))。このことから,面Pは負, 面Qは正に帯電し、金属板の内部には Qから面Pの向きに電場が生じる。この強さをE(V/m] とすると、電子は,ローレン ツカ euB(N]と,PからQの向きに電場による力 eE[N)を受ける。これらの力がつn あうまで,電子は面Pの側へ移動し続け,PQ間の電場が大きくなっていく。やが つりあいの状態になったとき、電子は,金属板の中を直進するようになる(図b) このとき, eE=evB であり,電場の強さ E[V/m]は,次式で表される。 本」 Hal votage が 30°となるように,2本の導線を49cm間隔に 特cn 一定の電流を流すと,金属棒 PQは静止した。 述の向きと大きさを求めよ。ただし,金属様 PO と導線の間には,摩擦がないものとする。 2.0T 30) 電源装置 西線電流とコイル 真空中で,十分に長い直線状の 電線に,上向きに電流1が流れており、導線と同一 平面内の,一辺の長さaの正方形コイル ABCD に ;時計まわりの向きに電流iが流れている。コイ ルの辺 AD は導線と平行で,導線からxだけはなれ ている。真空の透磁率を として,正方形コイル が受ける力の合力の向きと大きさを求めよ。 E=vB (75) ここで,金属板の厚さをh[m), 幅をdlm), 金属中の単位体積あたりの電子の数を n(個/m)とすると,式(31)から,1=env·hd となり,電子の速さ [m/s)は、 enhd と表される。したがって,ホール電圧 VIV]は, 式(8)を用いて,次のよう に求められる。 リー a- C 式(8) 『=Ed 式(31) 1=enuS Op.253 V=Ed=vBdー IB …(76) Op.224 ビントコイル ABCD が、自身におよばす力の合力は0である。 enh 「標準 半導体には,ホール効果が顕著におこる ものがあり,磁束密度を測定するための磁 気センサーなどに利用されている。 注意 キャリアが正常両の場合 帯電の仕方が負電荷の場合と逆に なり、面Pは正,面は負に帯電 3ローレンツカ●図かように,*軸に平行な磁東密度Bの一 様な磁場の中で、質量m, 電荷 q(>0)の粒子が、x軸との なす角が6となろように, 原点0から xz 面内に速さゅで 発射された。粒子を軸の正の向きから見ると、等速円運 する。 動をしている。次の各問に答えよ。 (1)円運動の半径と展期をそれぞれ求めよ。 (2) 発射されてから粒子が最初にx軸を通過するまでに、 粒子がx軸方向に進んだ距離を求めよ。 B ホール電田 金属板 V 面Q 電場から受け る力eE 面P folh 電場E ヒント粒子の運動を,磁場に垂直な面内と、磁場の方向に分けて考える。 面Q 面P 面Q 面P |基本 BO BO 4ホール効果●図のような直方体の形をした半導体に、 磁場 上向きに一様な磁場をかけて、 右向きに電流を流し ロー 電流 22 ま .40A, 12V 問23 5V, 1.0×10 ES 2d 節末問題 Rry (2) R+r。 R+r。 経習1(p.247)(1 (3) 図a 2(1) 2.0mA(2) 7.0V (3) 3.0mA B(1) 3.0mA,6.0V, 1.2×10-C (2) 1.0mA, 4.0V, 8.0×10*C (1) V+100/=5.0(2) 略(3) 20mA 第3節●電流と磁場 (p.278~299) 間44 2.5×10°N/Wb 問45 1.6A/m, 紙面に垂直に裏から表の向き 即6 時計まわりに1.6A S 立置 2d (G+2)eS 5ES 12d 虚像,正立 3d 翌24 0.10J 問25 1.2×10-J 防末問題 I AからBに向かって(2+/2)dの点 2 日(1) 7.2×10'N/C, Oからdの向き(2) 0V 2AQ 問47 15A/m 問48 東向きに6.3×10-N 問49 PからQの向き、0.38T 問50 右向き,4.0×10-4N 問51 (1)鉛直上向き、1.2×10-T (2) BからAの向き、3.6×10“N 問52 1.6×10-17N 5a 日 (1)点0… 点C…20 は下方から見 2k0g (2) 25ma なる部分は下 5 C-5.0×10- C, Cy…2.0×10-C C…3.0×10-C B A…6.0×10-4C, C…-2.0×10C 2元mcos 0 qB 電子の場合N, 正電荷の場合…M 第4節●電磁誘導と交流 (p.300~339) 間54 4.0×10-3Wb 問55 0.36A. PからQの向き 問56 00.10V, a→d→c→b→aの向き の0.10V, a→b→c→d→aの向き 問57 (1) 5.0×10-V (2)Q 練習1(p.306) 10"個 問53 紙面に避直に裏から表の向き, 日 (1)倍(2)-G PAd 2.S 第2節●電流(p.252~277) 問26 0.25A 問27 1.3×10*m/s 節末問題 QからPの向き、2.9A 日(1 Q 2S ia 2 左向き、 2エx(x+a) 45 78 ,周期2xm qB PN/C B(1) 半径 sin6 解答一覧 427 (2) P(3) Q(4) Q (5) Q(6) Q 間58 両者は等しい 問59 時計まわり 問60 30V 間61 0.25J 問62 0.60V, P 問63 0.20V 問64 141 V, 実効値…5.0A, 最大値…7.1A 問65 3.1×10°0, 3.2×10-A 76 4/m 8u Alm 問6 -sm 50t-)または一2co -cos50元 OW 問67 1.0×10°Q, 1.2A

回答募集中 回答数: 0
物理 高校生

(1)の右へx動かす問題で、なぜ右のバネは伸びていて、正の方向の弾性力だと断定できるのですか? (a<xとa>xで右のバネの伸び縮みを考慮する必要があると思いました)

LI7 藤田保健衛生大) 10.〈フックの法則とつりあい) 自然の長さがともに1,, ばね定数が k、と k2のばねを左 右につけた質量 mのおもりがあり,それぞれのばねの他 端は長さLの表面がなめらかな板の両端に固定してある。 ここでLは21。よりも大きいとする。 - 図のように, ばね定数 k2のばねが下になるようにして, 板を水平面に対して 90°より小さい任意の角度0だけ傾けることができる。 このとき, 板と おもりは常に接触しており, 2つのばねは常に自然の長さより長いとする。また, 重力加速 度の大きさをgとし, ばねの質量とおもりの大きさは無視できるとする。 (1) 0=0 で板が水平である場合を考える。このときのおもりのつりあいの位置をAとする。 おもりがAにあるときばね定数 keのばねの伸びaを求めよ。 また, 右向きを正として, お もりをAからばねの方向にそって×だけ動かしたとき, おもりがばねから受ける力Fを求 ki k2 0 0 (2) 板を水平面から角度0だけ傾けたとき, Aからのつりあいの位置の変化 xo を求めよ。 [湘南工科大) めよ。

未解決 回答数: 1