学年

教科

質問の種類

物理 高校生

高校物理の円運動の単元です。 (3)と(4) ともに軌道から受ける力の大きさを求めるのですが、なぜ(3)では運動方程式を用いたのに、(4)ではつりあいの式で求めるのでしょうか、!?😭

[知識 (1) C we (2)は (3)△ 221. くぼみを通過する小球 図のように, ABの間は鉛直, B→C→Dの間は点 O を中心とする半径の円周の一部, DE の間は水平面に対して角をなす斜面, E →Fの間は点Oを中心とする半径rの円 周の一部, FGの間は水平となっている なめらかな軌道がある。 また, 点BとEは 同じ高さである。 0, に対して高さんの点 (4) P A (5))(6) (6)5 F G 0₁ E B 0 D 02 C Aから,質量mの小球Pを自由落下させたところ,Pは軌道に沿って同じ鉛直面内を運 動した。 重力加速度の大きさをg として,次の各問に答えよ。 (1) Pが点Bを通過する瞬間の速さを求めよ。 (2) 点Cを通過する瞬間の, Pの運動エネルギーと速さをそれぞれ求めよ。 (3) 点Cで,Pが軌道から受ける力の大きさを求めよ。 (4)Pが点Dを通過した直後の速さを求めよ。 また、このとき,点DでPが軌道から受 ける力の大きさと, (3) で求めた点Cで受ける力の大きさの大小を比較せよ。 (5) 点Eを通過した直後に, Pが軌道からはなれないためのんの条件を, 0, h, r を用 いて表せ。 (6) 点Fを通過した直後に, Pが軌道から受ける力の大きさを求めよ。 ●ヒント (北里コ) 鉛 に

解決済み 回答数: 1
物理 高校生

波線のところで、式の変形が分かりません。

出題パターン 20 2物体の正面衝突 質量mの物体Aに初速度vを与えて 質 量M の物体Bに衝突させたところ、衝突後 の物体AおよびBの速度はそれぞれ右向き を正としてVA, UB となった。 (1)この衝突のはねかえり係数をe として, DA, UB を求めよ。 e=0 のとき, 衝突によって失われた力学的エネルギーはいくらか。 解答のポイント! B 軸の正の向きを確認して, 運動量保存則とはねかえり係数の式を連立して解く。 解法 (1) A, B 全体に着目すると外力の力積量 がないので,運動量保存則より, mv=mv+MvB. ・① 前の運動量後の運動量 また、はねかえり係数の式より 前 A 0 (B (日) で近 づいて くる 0+ e= 後でA, B が離れる速さ 前でA, B が近づく速さ Aは左へはねかえるかも しれないが,とりあえず 右向きに仮定しておく! UB VA で離れ ていく VB - VA == ②大の受 UB VA B Vo ②①に代入して, 3 mv = mvs+M(evo +v^) m-eM VA= Vo, = m+M (1+e)m DBm+M Vo 図6-5 《注》 ここでもしm < eMであるとき DA0 となってAは左にはねかえる。 (2)(完全非弾性衝突) のとき失われた力学的エネルギー 4E は, AE =mv mvo² 2 mv+ = -mv21- m 2 m+M mMvo2 =2(m +M)¨¨ mM (m+M)2 (正の向き) どとして) このエネルギーは衝突時に熱などとして 放出される。五 しゅ) TUR

解決済み 回答数: 1
物理 高校生

○物理基礎 3番について 16mになる途中式を教えていただきたいです

120 時刻 t [s] 2 v [m/s] (m) m)となる。 加速度 10 加速度 単位時間あたりの速度の変化。 単位はメートル毎秒毎秒 (記号m/s2) を用いる。 平均の加速度 4₁(s) l(s) a a= 速度の変化 所要時間 U2UL- t₂-t₁ 4v At v₁ [m/s] v₂ (m/s) a (m/s) 平均の加速度 2 x [m] 11 瞬間の加速度 4t を限りなく0に近づけたときの加速度。 等加速度直線運動 直線上を一定の加速度で進む運動。 v=v+at t [s] x=vot+ -at (m/s) 時刻 (s) における速度 (m/s) 初速度 α 〔m/s'): 加速度t [s〕: 時刻 (m) 時刻 〔s) における変位 v²-v₁²=2ax 0 0s a t(s) t vo (m/s) v [m/s] → x (m) I cm 12 等加速度直線運動のグラフ x (m) 接線の傾きがその 瞬間の速度 v[m/s] a [m/s]4 傾きは加速度α STEP0 a 面積は 移動距離 0 t〔s〕 O t〔s〕 0 t〔s〕 x-tグラフ v-tグラフ a-tグラフ 1. 直線道路で速度 1.5m/s で進んでいた自動車が 2.0s 後に速度 6.5m/sとなった。 この間の平均の加速度の大き さは何m/s2 か。 ② a= 速度の変化 所要時間 6.5 m/s- 15 m/s 2 (3) 5m/s2 2:0 S 2. 直線道路で速さ3.0m/sで進んでいた自動車が一定の加速度 2.0m/s2で加速した。 6.0s 後の速さは何m/sか。 自動車の進む向きを正として等加速度直線運動の式を用いる。 Vo, α, tが与えられて”を求めるから, ® CDs とおいて, 「v=vo+at」でv= v= =6 m/s m/s, a=20 |m/s2, t= 2.0m/s2x600 S= 10m/s 5-3 3.軸上を等加速度直線運動している物体がある。 この物体の速度は時刻 0sで3.0m/s, 時刻 4.0s で 5.0m/sで あった。この物体の加速度は何m/s2 か。 また, この4.0s間での移動距離は何m か。 4 この運動の時刻と速度との関係を右のグラフに表そう。 速度 加速度はこのグラフのたて で表されるので,Q.5 m/s2 [m/s] 6.0 5.0 4.0 である。 また, 移動距離ばこのグラフの直線とt軸で囲まれた 3.0 I 面接で表されるので, 4.0mである。 2.0 1.0 000 0 12/205× 1.0 2.0 3.0 4.0 時刻 [s 2 運動の表し方

解決済み 回答数: 1
物理 高校生

物理についての質問です。写真の一枚目は問題文と解答の写真です。2枚目は教科書、3枚目は自分で考えた結果出てきた答えです。大問3がわかりません。解答にあるΔt×aベクトルはaとbの速度の和だと思うのですが、教科書にある①と②のやり方のどちらとも合っていない気がします。また3枚... 続きを読む

サ 東京発 東京 上野 大宮 風谷 発 発 発 本庄早稲田 宮崎 安中榛名 桜井沢 発 発 和倉温泉 七尾 良川 羽咋 高松 宇野気 津 発 発 着 金沢 発 5.35 6:07 6:45 佐久平 上田 6:14 発 長野 松任 小松 発 5:53 6:27 7:01 飯山 上越妙 発 発 発 加賀温泉 大聖寺 発 ! 6:36 ↓ | 50 芦原温泉 発 ! 6:48 1 黒部宇奈月温泉 着 6:19 6:59 7:28 福井 富山 発 6:21 6:37 発 6:20 7:01 7:30 新高岡 6:30 6:46 鯖江 発 7:11 ↓ 着 6:44 7:00 武生 発 6:32 7:15 金沢 小松 加賀温泉 芦原温泉 福井 発 6:00 発 6:46 7:02 教 発 16:53 7:37 8:01 6:11 6:19 ↓ 7:13 近江今津 7:16 8:02 ↓ 7:21 7:35 8:22 ↓ たけふ 教 備考 6:27 58 発 6:36 発 6:45 ↓ 着 6:57 7:27 <14> <11>> 7:29 7:10 7:38 京都 発 7:50 8:37 8:55 7:47 7:59 <11> 高槻 新大阪 大阪 発 発 着 8:15 9:01 9:18 8:20 9:06 9:22 北新幹線 2.0 [選択肢 ① 約155km/h ② 約185km/h ③ 約215km/h ④ 約245km/h ⑤ 約75km ⑥ 約100km ⑦ 約125km ⑧ 約150km 3. 以下の問いに答えよ。 [知識・技能] 右図のように,ある時刻にある地点Aを北向きに通過した物体が, 4.0s後に地点 Bを東向きに通過した。 この間の平均加速度の向きを図示し,その大きさを有効数 字2桁で解答せよ。 2.0m/s (2) 次のように等加速度直線運動をする物体がある。 以下の値を有効数字2桁で解答せよ。 3.[知識・技能] 有効数字に留意し、 単位を付記すること A (1) 4.05 2.0.15 B 2.0m/s 流 ふき 180 大きさ B 2.0m/s (2) ア -1 7.1 x 10 m/s² 4.0m/s2 st x a 2.0 *s 必要に応じて補助線等を使用し、 平均加速度の向きを丁寧に図示 すること 8.0m オ 2.0m/s A (3)ウ IP- <芋> -2.0m/sa <理> <芋> <理> -2.0 m/s 40s 4.0 s VA 6.0m/s -6.0 m/s (12×10m) 3.0g 6.0s て (308) 14 ↑足さ

解決済み 回答数: 1