学年

教科

質問の種類

物理 高校生

(2)で求めたエックスゼロと、(4)で求めるLは同じ座標ですか? 追加 (5)のグラフを見て同じでは無いことはわかったのですが、それならなぜセックスゼロで物体Aが静止できるのか分かりません。教えてください。

3 図のように、電荷Qを帯びた質量mの小さ な物体Aが水平面からの角度の斜面上にあり、 電荷Qを帯びた小さな物体Bが斜面の下に固定 されている。 物体Bの位置を原点とし、斜面 上方に向かってx軸をとる。 物体Aはx軸上を なめらかに動くことができる。 物体Aと物体B の間にはたらくクーロン力の比例定数をんとし, 重力加速度の大きさを」 とする。 また、運動す る電荷からの電磁波の放射と空気抵抗は無視できるものとする。 次の問いに答えよ。 (1) 物体Aの座標をx, 加速度をaとするとき, 物体 A の運動方程式を記せ。 (2) 物体Aが静止することのできる座標x を, k, Q, m, g, 0 を用いて表せ。 水平面 次に,物体Aを座標s (s<x) の位置に置いて、静かにはなした。その後の物体Aの 運動を考える。 (3) 座標sで物体 A のもつ力学的エネルギーEを, s, k, Q, m, g, f を用いて表せ。 ただし、重力による位置エネルギーの基準は原点0の高さとし, 物体Bによる電位 の基準は無限逮方とする。 x S x0 (4) 物体Aが原点から最も離れたときの座標L, E, k, Q, m, g, f を用いて 表せ。 S 物体B x (5)s が x に比べて非常に小さいとき,物体Aの座標xと時刻の関係を表すグラフ として,最もふさわしいものを次の解答群の中から選び記号で答えよ。 [解答群] xo min m # W x0 W S ol X x mm M W A x0 S S 0 x S 原点O 物体 AS なめらか な斜面 (広島2013)

回答募集中 回答数: 0
物理 高校生

65 問題1枚目下、解答1枚目上にあります。 解説のような計算方法が思いつかなく、lの二次方程式の解の公式から答えを出そうとしました。(2枚目) 2枚目は途中まで合っていますか? また合っている場合この先の計算がわかりません。 どなたか教えて下さると幸いです。

に klh +kh?の増加になっている。 解)単振動の位置エネルギー(p 79) を用いると, つり合い位置(振動中心) いらんだけずらしたときの位置エネ レギーの増加は一kh° と即答できる。 はじめの弾性エネルギー→ka'が 弾性エネルギー々と摩擦熱に変わっ ているので 65 ka=P+umg(a+) (a°-1)=umg(a+) はじめの運動エネルギーのすべてが 三熱になったので a°-1?を(a+1)(a-1)と して両辺を a+1で割ると m=umgL 々(aー)=umg 2 2umg Lミ 2ug 1=a- k ろん, 運動方程式で解くこともでき 39参照)が,エネルギー保存の方が 似た項は集める ーこれがテクニック。 2次方程式の解の公式でも解けるが, 計算はかなり手間取る。 てまど い。 Isin0の高さ り,位置エネ ーが運動エネ (参考)p85 High の方法 この運動は自然長から umg/kだけ 左の位置を中心とする単振動となる。 19 次図のように,振幅はaーμmg/k ーと摩擦熱に a+l=2×(aーmg) k ったから g1sin0= mu+1μmg cos 0 · 1 2umg k . リ=/2gl(sin0-μ cos0) い十 - 65* 水平面上で, Pにばねを取り付け,ばねを自 然長からaだけ縮ませてからPを放した。ばね の伸びの最大値を求めよ。ばね定数はkとする。 る 0000000 は遠 め化 リ 2%

解決済み 回答数: 2