学年

教科

質問の種類

物理 高校生

(3)の解説お願いします。

Date 3運動の法則 17 |23. 〈滑車と物体の運動) 次の設問では、糸および滑車の質量、 ならびに物体の大きさは ないものとする。また、糸は伸び縮みしないものとし、 滑車はな めらかに回転できるものとする。重力加速度の大きさをgとして、 次の設問に答えよ。 [A) 図1のように, 質量 mの物体Aと質量5mの物体Bを糸 1で結び、滑車Pにつるす。 さらにこの滑車Pと物体Cを糸2 で結び,天井から糸3でつるされた滑車Qにつるす。 (1) 物体 A,物体Bおよび物体Cを同時に静かにはなしたとき, 物体Aと物体Bは動きだしたが, 物体Cは静止したままであ った。物体Cの質量はいくらであったか。数字ならびに m, gの中から必要なものを用いて答えよ。 [B] 次に,図2のように, 物体Aと物体Bを同じ高さに固定し, 図1の物体Cを糸2から取り外す。その後,糸2の右端を一定 の大きさFのカで鉛直下方に引くと同時に, 物体Aと物体Bを 静かにはなすと, 滑車Pは上昇した。物体の運動中に,滑車ど うしの接触や物体と滑車の接触は起こらないものとする。数字 ならびに m, g, F, dの中から必要なものを用いて次の設問に 答えよ。 (2) 物体Aと物体Bを静かにはなした後の,糸1の張力の大き さはいくらか。 (3) 物体Aと物体Bの高さの差がdになった瞬間の物体Aの速さはいくらか。 天井 糸3 滑車Q 滑車P 糸2 糸1 物体B 物体C 物体A m 5m 図1 天井 糸3 滑車Q、 滑車P 糸2 糸1 物体B カF 物体A m 5m 図2 (19 九州工 -24. 〈動く斜面上の糸でつるした小球〉 水平面に対する傾角が0[rad] のなめらかな斜面 ABを った台Pがある。その斜面上に質量m[kg] の小球Qを とフ

回答募集中 回答数: 0
物理 高校生

64<シリンダー内のピストンの運動> ⑶が定圧変化になる理由を教えてください🙏

2L回衝突するの 間 At の間に壁面Aの受ける力積は 2mu,x "At _ mu;At (N.o 0| 48 9気体分子の運動と状態変化 外で空気の圧力は等しい。 次に, 球体内の空気をゆっくり加熱して, 空気の温度をアに る。このとき球体内の空気の密度はpであった。 (2) pをTo, Po, Tを用いて表せ。 空気を除いた気球にはたらく重力の大きさは, 重力加速度の大きさをg[m/s"] とまっ と,Mg[N] である。また, 球体内の空気の温度がTのとき, 空気の質量はpV[kg〕 で去 る。球体内の空気にはたらく重力の大きさは, V, To, Po, T, gを用いてオ]xg[N) と表すことができる。 よって, 空気を含む気球にはたらく重力の大きさF[N] は, F=(M+())×g で与えられる。一方, 空気中に置かれた球体は, 球体外のまわりの空気 から鉛直上向きに押し上げる力, すなわち, 浮力を受ける。 簡単のため, 球体外のまわり の空気の密度をPo とすると, その浮力の大きさf[N] は球体内の空気と同じ体積をもっ 球体外の空気にはたらく重力と同じ大きさで, f= カ]×g で与えられる。いま, Tが Fと子の一致する温度 T,[K] をこえると,気球が上昇し始めた。 (3) 横軸に球体内の空気の温度 T, 縦軸にFをとって, グラフの概形をかけ。 (4) 球体内の空気の温度に対するFと子の関係から, 気球が浮上する理由を説明せよ。 (5)気球が浮上を始める温度 T, を1V, M, To, poを用いて表せ。 [16 大阪工大) 必幅64. 〈シリンダー内のピストンの運動〉 図のように,断面積S[m°] の十分長いシリンダーが鉛直に置かれて いる。シリンダー上部には質量を無視できるピストンがはめこまれ, シリンダー内部に理想気体が封入されている。 ピストンは断熱材で作ら れており, 気密を保ちながらなめらかに上下に動くものとする。シリン ダーは断熱材でおおわれており, 断熱材は取り外しできるものとする。 初期状態ではピストンは静止しており, ピストンの底部はシリンダーの 底から高さ ho [m] の位置にあり, シリンダー内部に封入された理想気体の温度は To[K], 圧力は Po[N/m°] であるとする。このとき, 次の問いに答えよ。 なお, シリンダー外部の大 気の温度を To[K], その圧力を Po[N/m°], 重力加速度の大きさをg [m/s°] とする。 (1)ピストンの上部に質量 M[kg] のおもりをゆっくりのせたところ, ピストンの底部がシリ ンダーの底から高さh、[m] の位置に下がった状態で静止した。 この状態における理想気 体の温度 T. [K]を To, Po, ho, h, M, S, gを用いて表せ。 (2) T, と Toの大小関係で正しいものを次のうちから1つ選び, 選択理由を20字程度で記せ。 (a) T;> To (3) 次に, シリンダーの側面の断熱材を取り外したところ, やがて, シリンダー内部に封入さ れた理想気体の温度は To[K] になり, ピストンの底部はシリンダーの底から h2[m] の位 置に変化した。h2を Po, ho, M, S, gを用いて表せ。 (4) h2と h,の大小関係で正しいものを次のうちから1つ選べ。 シリンダー ピストン ho[m] (b) T;=To (c) T;< To (d) 与えられた条件からは判断できない (a) h2>h. (b) h2=h」 (c) h2くh」 (d) 与えられた条件からは判断できない (5) 続いて, シリンダーの側面に断熱材を再び取りつけ, ビストンの上部のおもりをゆっくり 取り去ったところ, ビストンの底部はシリンダーの底から高さ hs[m] の位置で静止した。 この状態での理想気体の温度をT. [K] として, hsを ho, To, Ts を用いて表せ。 [千葉大] 断熱材

回答募集中 回答数: 0
物理 高校生

物理の重要問題集です。4番でなぜこのような発想ができるのか知りたいです。

温度調節器一 て平衡状態に達したのり、 Ⅲの中の気体の温度を求めるとケとなる。 67.くばね付きビストンで封じられた気体〉 なめらかに動く断面積S [m]のビストンと体積が無 視できる温度調節器をもつ容器に1mol の単原子分子理 想気体が閉じこめられている。 図のように, ピストンは ばね定数k [N/m)のばねで容器とつながれており, 容 器は水平に置かれている。 初め, ばねは自然の長さであり, 温度調節器を取りつけた内壁 らビストンまでの距離がL [m])のところでピストンは静止していた。 容器とビストンは 熱材でできており, 大気圧を Po [Pa), 気体定数をR【J/(mol-K)] として, 次の問いに答え。 (1) 容器内の気体の温度 T。 [K] を求めよ。 (1) 過程Iで気体が外部から吸収す 外部から吸収する熱量と,状態 和で求められる。Qを CvとC (2) 過程Ⅱで気体が外部からされた (3) (2)の結果と熱力学第一法則を 部から吸収する熱量免を求め (4) (1)と(3)の結果を比較して、 C 式を求めよ。ただし、その導 (C] 状態Aから状態Bへ変化さ により状態Aから状態D (圧力 の後定積変化で状態Dから状態 過程Ⅲで気体が外部からされた W。と過程Iにおける の大 (京都を 00ONMNMN- 次に、温度調節器を使って容器内の気体をゆっくりと温めたところ. ばねが2L(m)だ [DJ 状態Aかられ生た 縮んだところでビストンが静止した。 (2) 容器内の気体の圧力 P. [Pa] を求めよ。 (3) 容器内の気体の温度T; [K] を求めよ。 積V)まで気体を圧縮しその名 (1) 状態Eの温度をT5(K)と (2) この過程Nのか-V国の概 き出ても何も仕事をしないので, そのは変わら。ため内部エ

回答募集中 回答数: 0
物理 高校生

106(オ)がわからないです

(2)図の最初の状態にもどる。すなわち,各スイッチは開いており、 (4)各コンデンサーの耐電圧(耐えられる電圧の限界)がすべて 45Vであるとき,合成コンデ C, Dの電位はそれぞれ Va=V(V), Va=Dオコ×V[V). [V/m]である。導体板 A, B, C, D間に蓄積されている静電エ 図1のように、十分に広い面積Sをもった平行板コンデンサーにおいて, 左側の極板Aは この状態でスイッチ S.のみを閉じた。このとき, 専体板A, B, どの導体板にも電荷は蓄えられていない。次の2つの操作後の結果を比較しよう。 d(m)、2d (m), 3d[m) とする。ここで, dは導体板の辺の長さ aと比較して十分小さいと する。国中のS,Sa. Siはスイッチを表している。 電源Vは電圧「V[V) の直流電源であり。 操作a):スイッチ S」を閉じ,しばらくしてスイッチ S,を開く。 それからスイッチS.を る文章を解答群から選べ。ただし、 数式は C, V、 dのうち必要なものを用いて答えよ。 2つの導体板 A, Bを平行板コンデンサーとみなしたときの電気容量を CIF) とする。 導体板Dは電源の負極とともに接地されている(接地点の電位を基準V とする。 また。 84 コンデンサー 85 標準間■ A つり最初の状態ではどの事体数にも電荷は書えられていたい。 °104.(コンデンサーの合成容量) 6.0Vの直流電源Eと,電気容量がそれぞれ 3.0μF, 1.5μF, 2,0μF, 2.0μFの4つのコンデンサー Ci, Ca, Cs, C4を図のように 接続し、十分に時間を経過させた。各コンデンサーは,接続する前 は電荷をもっていなかったものとして,次の問いに答えよ。 (1) 4つのコンデンサーの合成容量 C [uF] を求めよ。 (2)各コンデンサーに加わる電圧 Vi. Vz, Vs, Va [V), および蓄えら れた電気量Q,Q, Q, Q [C] を求めよ。 (3) 各コンデンサーに蓄えられた静電エネルギーの合計び [J] を求めよ。 C C。 S」 し ×V (VJ, Vo=UV である。導体板BとCの向かい合 C。 れらの間の空間に発生する電場は図で右向き, その強きは AB C E ネルギーの合計はオ|×CV2[J] である。 通体所の間属は拡大して かいてある ンサーとしての耐電圧 Vimax (V] を求めよ。 105.(ばね付きコンデンサー) (10 群馬大) 閉じる。 固定されているが、右側の極板Bは壁に固定されているばね (ばね定数k)につながカて。 て、Aに平行なまま動くことができる。極板が帯電していないとき, ばねは自然の長さのい 態にあり,極板間の距離はdであった。次に,図2のように,極板Aに正, 極板Bに自の筆 荷を徐々に帯電させるとばねは徐々に伸び,最終的に極板Aに +Q, 極板Bに -Qの雷益た 帯電させたところ, ばねの伸びが 4d (Ad <d), 極板問距離がd-ddとなったところでつり あった。真空の誘電率を Eo, 空気の比誘電率を1とする。また, ばねおよび壁の帯電, 重力 の影響はないものとする。次の問いに答えよ。ただし, (2)~~(5)は, Eo, d, k, Q, Sの中から 必要なものを用いて解答せよ。 (1) 電気力線のようすを図3に矢印で表せ。 極板間の電場の強さEを求めよ。 極板Bにはたらく電気的な力Fを求めよ。 (4) dd を求めよ。 (5) 極板間の電位差Vを求めよ。 ここで、極板Bを固定し、極板Aに +Q. 極板Bに -Qの電荷 を帯電させたまま、極板間に、比誘電率2の誘電体を図4のよう にゆっくりと差しこんだ。 6 このときの電気力線のようすを図4に矢印で表せ。 (7) Bにはたらく電気的な力は,(3)と比べてどうなるか。 を開く。 初めに操作(a)による結果を考察する。操作終了後,導体板CとDの間の電場の強さは 一カ(V/m] であり,導体板Aの電位は Via=Lキ ×V(V) である。このとき、毒体 新間全体に蓄積された静電エネルギーは,(1)のエネルギーの値オ×CV?[J) の ク]番 である。 一方,操作(b)の場合, 操作終了後に導体板AとBの同に発生する電場の強さはケ (V/m] であり, 導体板Aに蓄えられた電気量は Q=D■コ C) である。 また、事体板 A Bの電位はそれぞれ VAb= サ×1/[V), Vias=■シ×1/(V) となる。この場合、毒 体板間全体に蓄積された静電エネルギーは, (1)のエネルギーの値閉×CV*(J]の ス] 倍である。 したがって、2つの操作後の結果を比較すると次のようなことがわかる。 スイッチS。 を閉じると導体板 B, C間に発生していた電場が消失するので, スイッチを開じた直後。 その分の静電エネルギーが減少する。このとき、 セ」ということがいえる。 (2)の(b)の操作後,しばらくしてスイッチS:を開き、それからスイッチS,を開じた。この とき,導体板Cの電位は V%=[ ソ×1/[V] で, 導体板BとDに蓄えられている電気量 (絶対値)はそれぞれタ×0,[C). 「 チ]×Q&(C) となる。ここで、 &はこのコ(C である。 |セの解答群 3- d-dd- B A B otinl Foom P00000 +Q-91 図1 図2 -Q +Q 図3 +Q *106.(4枚の導体板によるコンデンサー回路) (15 広島市大 改) 図4 (a), (b)で等しくなる 間の静電エネルギーに加算される (14 東京理大改) s」a 51

回答募集中 回答数: 0
物理 高校生

94の(7)ですが、うなりだけでなく、経路差による波の干渉は考えなくて良いのですか?

スのとが預で 光線の 75 時間 3 Sから出た光の振動数を了, Hから遠ざかる M, に届く光の振動数をと 変位 おくと,「ロ=A」とドップラー効果の式より (図b) ア-- (6 M から反射される光の振動数を f"とおくと、 図cと(5)の結果より 2月.dcosr= COSアーT-sin'r=,/1-/sini)=n-sin'i これを(6の結果に代入すると 2md-sin (8) 入射角i=0° のときに干渉光が明るくなるので,(7)の結果より 2dm-sin'o"=2md (m+ "'Si<90° の範囲で, iを大きくすると光路差2d\n-sin'i は小さくな るので、i=i のときに干渉光が明るくなる条件は 24/m-sini-(m-- 速度 (7)「sin'0+cos'0=1」の関係と(⑥式よょり C-u .c-u_c-u, c+ 入 No ni /m+ よって 2d/n"-sin'i-(m+)a /"=D£ c+u Mが普調者 7 M から届く" の光と, Maから届く子の光が干渉して、黄の場合のうなり 質量 図b カ ……の n当する現象が起きたと考えられるので, うなりの 重力ー 垂直林 20 C+p Tア-| C+u a 2 c 弾 よって,求める周間は M,が“光高 82 05 (スリットによる光の回折) 動摩 ただし、の式より i=0, m=0 では光路差は今となり, iを大きく」ナ。 スリット周隔の最大公約数を考えてみる。 静止 1(4)2離れた波源からの光の弱めあいと、2離れた波添からの光の弱めあいを考える。 1図aより,2つのスリットからPに達する光の光路差は wsin0 である。 慣性 光ま ときに次の極大点をとりえないので,mèl となる。 (2 度 折理 の,6式より 2dVn?-sin'i 2nd m-7 て変 6で初めて弱めあう条件より wsin0,=ー のでは1次の強めあいであるから フモー m+ O1 g2) て よって sin0,= 20 2m-1 Vn"-sin'i (ただし、m=1, 2, 3, …) よって 2m+1 sin0 (整理すると(2m+1)'sin'i,=8mn,") よって sin= た wsinの=0+1×A 03) 薄 12) 2つのスリット間隔は, 30d, 45d, 60d,-75d, 90d, 120d, 135d, 180dの 組合せが考えられる。これらの最大公約数は15d となるから。 15d-sin6,=0+1×iの関係が成りたつとき,それぞれのスリットからの半 図。 中奈A 30dsin8,=2入 45dsin6=32 などとなり、すべてのスリッ トからの先が強めあう。 中※B(参考) N==1 (国9) 暗。 94(マイケルソン千渉計) い A4) (3 (4 え よって sin,= 「15d (3)絶対屈折率nの媒質中では, 波長は一倍になり,光にとっての距離である光学距離はn倍になる。 (6) M.はドップラー効果によって光源が発した振動数とは異なる振動数/'の光を受け取り, その/の光を反射する Mは動いているので, さらにドップラー効果が生じて, D にはS'とは異なる振動数" の光が届くことになる がすべて強めあう#A←。 n 一度 薄膜 次に して入! 射するう ラス板の 3 N=2 (図 10)の場合, 一離れた波源(例えば、 (5 2 の場合 = と考えて、弱 QとQ, Qa とQ)からの光が弱めあう条件は 入※B- 「D (1) ある点と1波長分離れた点の位相差は 2xであるので, 距離 /離れた地点で めあう条件は sing=-- 22 の位相差は 2元ー よって sin0,=ー sin0 DD'D'D一 44 4 (2) 2つの光線の経路差は 2L,-2L2 であるので, これが①式の!にあたる。 離れた波源(例えば, Qi と Qa, Qaと Q)か トD。 5) 中華C 弱めあう条件は x 2(Li-L)_4x(L-L) え の千渉を であると X5) 薄膜の よって 2x×- らの光が弱めあう条件は 図b dsin0=なので、 dが大 きいほうがsin@が小さく。 ゆえに0も小さな値となる。 ※A 別解 ガラス中におい (3) 厚さdのガラスを透過するときの光学距離は nd なので, ガラス内の往復 で生じる光路差は2nd-2dとなる。これが①式の!にあたる。 22※C= D て,波長は4になるので sin 0= よって sin0;=- よって 2x×2nd-2d_4xd(n-1) ※A← (図a),位相差の変化量は 4 N=1 のとき, 離れた波源の組合せで初めの弱めあいとなり, N=2 の D 中※D 2d 2ォー -21 ときも N=1 の場合のように, (4) M. と Ma が静止していたとき2つの光線はDで同位相であったことから, m(m=1, 2, 3, …) を用いて, ②式より 4z(L-L)。 Q.Q Q.9 離れた波源の組合せで初めの弱めあいと なった。一般に,スリットを2N(Nは大)等分した場合,N=1 の場合のよ n 4元d(n-1) =2xXm うに、号離れた波源原の組合せで初めの弱めあいとなるから#D* D 図のように、号離れた点. A6 一方、M,をだけHに近づけたとき, 2つの光線が初めて逆位相になった とすると, M,とHの間の距離は Lー41になっているので 4z(L-I-L)_4x(L:-La)_4x4 Qで光が弱めあうとすれば、 少し隣にずれたQ、で も同様に光が弱めあう。つま え よって sin,= D また、N=2 の場合のように, =2x×m-π 離れた波源の組合せで, 次の弱めあいとな| スリット内の号度れた点 るから sina- からの素元波どうしがすべて 弱めあう。 波長 入 以上2式より , 4元A ニ=x よって 4l=4 2入 よって sins== 図』 D 102 物理重要問題集 物理重要問題集 103 (5)新

回答募集中 回答数: 0
物理 高校生

5番なのですが、答えのところを四角で囲ってあるように、加速度の向きが上向きなのが分かりません。単振動の加速度は常に振動の中心向きなのでは?と思いました。x軸方向に合わせているということでしょうか? どなたか解答よろしくお願いします🙇‍♂️

必開や54.くたてばねによる単振動〉 図1(a)は,ばね定数 k, 自然の長さLの軽いばね (質量は無視できるものとする)を鉛直に立てたとこ ろを示す。このばねに質量 mの薄い台を取りつけ, 台の上に質量Mの小さな物体を静かに置くと, 図1 (b) L に示すようにばねは自然の長さからdだけ縮んでつり あった。この位置をつりあいの位置とする。つりあい の位置から台を軽く押し下げて手をはなすと物体は台 に乗ったままで振動するが, 強く押し下げて手をはな すと物体は台から離れて鉛直上方に飛び出す。 ばねは鉛直方向のみに運動するとし, 重力加速度の大きさをgとして次の問いに答えよ。 (1)ばねの縮んだ長さdを求めよ。 (2) 図1(c)に示すように, つりあいの位置から手で台をsだけ押し下げた。 このとき手が台 を押している力の大きさ F。 をん, s, gのうち必要なものを用いて表せ。 つりあいの位置から手で台を押し下げた長さ sが十分に小さいとき手をはなすと, 物体と 台は一体となって振動する。 なお, x軸はつりあいの位置を原点とし, 鉛直上方を正にとる。 (3) つりあいの位置からの変位がxのとき, 物体と台にはたらく力Fを求めよ。 (4) このときの振動の周期Tを求めよ。 次に,押し下げた長さ sが十分に大きいとき, 物体は台から離れて鉛直上方に飛び出す。 物体が台から離れる変位を xo とすると, つりあいの位置からの変位xがxoに達するまで, 物体と台はともに加速度αで鉛直上方に運動する。 このとき,物体は台から垂直抗力Nを受け, その反作用とし て台は物体から-N の力を受けているとする。 (5)物体の運動方程式と台の運動方程式をそれぞれ求めよ。 (6)垂直抗力Nを m, M, d, x, g のうち必要なものを用いて表 せ。また,導き方も記入せよ。 (7) 垂直抗力Nを変位×の関数として, 図2にグラフを示せ。 ただし, s>d とする。 (8)物体が台から離れるときの変位 xoを求めよ。 (9)物体が台から離れるときの物体の速さ vo を求めよ。 また, 導き方も記入せよ。 ただし, m=M, s=2d とし, 答えはM, k, gのうち必要なものを用いて表せ。 ばね 物体 図1 図2 N 3Mg |2Mg Mg 0 S [広島大) 000。

未解決 回答数: 1