学年

教科

質問の種類

物理 高校生

(2)で質問です。 イプシロンやSが書かれていない時はそのままdの変化で考えて大丈夫なのですか?

発展例題38 極板間にはたらく力 電気容量 C,極板間隔dの平行板コンデンサーがある。両極板 ⊿x には,±Q の電荷がたくわえられている。 極板間の電場は一様で あるとして,次の各問に答えよ。 +Q -Q (1) コンデンサーがたくわえている静電エネルギーを求めよ。 √(2) 極板間の距離をゆっくりと 4x引きはなしたときの静電エネルギーを求めよ。 V (3) 極板間にはたらく引力の大きさを求めよ。 指針 極板を引きはなす仕事の分だけ,コ ンデンサーの静電エネルギーは増加する。 また, 引きはなす力と極板間の引力の大きさは等しい。 解説 (1) 静電エネルギーをUとして, U= = 2C (2) 極板を引きはなした後の電気容量をCとす る。 電気容量は, 極板間隔に反比例するので、 C'= d+4x -Cとなる。 求める静電エネルギー U'は, U'= 2C' = Q°(d+4x) 2Cd ■発展問題 473 d (3) 極板を引きはなす力の大きさをFとする。 この力がする仕事 F⊿x は, 静電エネルギーの 増加分 U'-Uに等しい。 F4x=U'-U=Q24x F= Q² 2Cd 2Cd 極板間の引力の大きさは,極板を引きはなす ときに加える力の大きさFと等しい。 (1) (注) 真空の誘電率を so, 極板の面積をSとする。 C = S/d から,Cd=Sであり、力の大きさ Q2/(2Cd) はQ2/(2S) と表される。 Q, S, E は極板間隔が変化しても一定であるから,極板 間の引力は一定となる。

解決済み 回答数: 1
物理 高校生

コンデンサーの問題です。 問2が理解できません。解説お願いします。

が電場 1 追試 本試 30 ㊙ 132. 平行板コンデンサー 4分 Vo を加えた。次に,帯電していない厚さdの金属板を、図2のように極板間の中央に,極板と平行と 図1のように、極板間の距離が3dの平行板コンデンサーに電圧 なるように挿入した。極板と金属板の面は同じ大きさ同じ形である。 また,図1および図2のように, 左の極板からの距離をxとする。図中には,両極板の中心を結ぶ線分を破線で,x=d および x=2dの 位置を点線で示した。 Vo 0 V Vo d d 問1 図1および図2において, 十分長い時間が経過した後の, 両極板の中心を結ぶ線分上の電位V とxの関係を表す最も適当なグラフを、次の①~⑥のうちから1つずつ選べ。 ただし, 同じものを くり返し選んでもよい。 図 1: ア 図2: 2d T 2 0 2d d 2d 3dx +H Vo 図 1 イ 3d x 3dx (2) Vo 2 3 0 V4 Vo 0 いものを、次の①~⑦のうちから1つ選べ。 41 ① 04/1 9 d I d ⑤ 2d 3 2 1 2d 3d 3d x 金属板 0 d 2d 3dx ⑥ 2 Vo 図2 Vo ⑦ 55 9 4 Vo 問2 十分長い時間が経過した後の, 図1のコンデンサーに蓄えられたエネルギーをU, 図2の金属 板が挿入されたコンデンサーに蓄えられたエネルギーをUとする。エネルギーの比 として正し d 1 d 2d 2d 3dx 3dx [2017 本試] 第4編 第9章 電場 101 電気と磁気

回答募集中 回答数: 0
物理 高校生

問109のコンデンサーの問題です。 S1を端子2に切り替えたときC1の電圧が2/3Cのままである理由を教えてください。

109 ・回路とつなぎかえ> 電気量保存の法則と、電位差の関係式を用いる。 (イ)S, を端子2に入れる C2の電圧はEと等しい 「極板の間隔を2倍」 電気容量は倍 Aのほうへ電荷をもどそうとするが、 ダイオードに止められる ア) 回路は実質的に右図の実線部分となり, C1 と C2 は直列である。 C と C2 の電圧をそれぞれ V1, V2 とすると AB間の電圧について Vi+V2=E 電気量について Q=CV=2CV2 上記2式より V₁=E 別解 初期電荷が0だからCとC2の電圧の比は電気容量の逆数の比になる。 C+2CE=2/3E C の電圧 V は Vi=C+2C 2C (イ) S端子2に入れると, C2の極板間の電圧はEになるから,AB間の電位 差は Vi+E= 5 =1/32E+E=1E (ウ)BよりAのほうが電位が高いからDには順方向に電流が流れ,Dの電圧が 0になるまで電荷が移動する。 S2 を閉じた後の各コンデンサーの電位差を図のように V1, V2, Vと すると V1 + V2=V/3 ※A← ...... ① また、各コンデンサーに蓄えられている電気量はそれぞれ Q=CV1 Q2=2CV2 Q3 = 2CV3 点A側の電荷の保存より +Q+Q=+/CE+0 ゆえに Vi+2Vs = 212/2E 点P側の電荷の保存より -Q+Q2=1/3CE+2CE ゆえに Vi+2V2=1/32E -E q=Q₁==ce, 2 V-22-1/21. v= Q = 5 E₁ -3 ③ 5 ①, ②, ③ 式より V1, V2 を消去して V3 を求めると Vs= よって, 求める Q3 は 12 Q3=C₁V₁=2C ×52E=CE 12 別解 S2 を閉じた後の図で,点A, Pの電位をx, y と仮定する。点P側の 極板の電荷の保存より Cx(y-x)+2C×(y-0)=-12/3CE+2CE 点A側の極板の電荷の保存より C×(x-y)+2C×(x-0)=+/3/3CE+0 -E, =1/72E.y=1/2E -E 上記2式より x= 5 よって,C の電気量 Q, はQ=2C×(x-1)=2C×(1/E-0)=1/CE (エ) 極板の間隔を広げると電気容量が小さくなる※B。 「Q=CV」より,Q3が 一定ならば,C3 が小さくなると V3 は増加することとなる。 電荷はダイオードDを逆方向に流れることができないから, C3 の電荷が(ウ) のまま保たれる。 V1 Cx=2C×12=cQ==.22CE 2 11 2 _1.Q2 5 1 = U = 1 x V² - 1 · 2 0 - 1 0 ( 2 ) ² - 1 IC (CE) - CE = -CE2 25 144 2 2C 2 2C V20 E S1 |C1 P• ・C C 2 2C A A C₁ C₂ C1 B V3 C 2C より V1+V2=V3 S2 を閉じる前 A V₁ ※ A Vi+ V2=V V3 = V HE 2C B +2/3CE CE C3 P +2CE C21 2C-2CE B S2 を閉じた後 Ax 0 電位差 0 2C S₂ 文 C31 2C0 電位差 0 2C 気容量がいずれもC〔F〕のコンデンサー C1, C2, 抵抗値 108. 〈スイッチの切りかえによる電荷の移動> 図のように、電圧 Vo [V], 2V 〔V〕 の電池 E1, E2, 電 [R[Ω] の抵抗 R, スイッチ S1, S2 が接続されている。 最 初, スイッチ S1, S2 は開いていて,C1, C2 には電荷は蓄 えられていないものとする。また, 電池の内部抵抗は無 1+ 視できるものとする。 次の問いに答えよ。 Vo (V) E2 2V (V) (1) S, を閉じてから十分に時間が経過した。 この間に電池E」 がした仕事を求めよ。 (2) 次に, S, を開きS2を閉じた。 十分に時間が経過した後のC2 の両端の電位差を求めよ。 また, この間に電池 E2 がした仕事を求めよ。 (3) 続いて, S2 を開き, S1 を閉じた。 十分に時間が経過した後, Si を開き S2を閉じた。さら に十分に時間が経過した後の, C2 の両端の電位差を求めよ。 (4) この後,(3)の操作をくり返すと, C2 の両端の電位差はある有限な値に近づく。その値を 求めよ。 S ◆BC=es より電気容 量は極板間隔dに反比例する。 S₁ 180 114 コンデンサー 89 B R R [Ω] C₁ C [F] 109. 〈ダイオードを含むコンデンサー回路とつなぎかえ> 次のア~ウに当てはまる式を記せ。 また,エは指示通りに解答せよ。 A S2 C2 C [F] tr 図に示した回路において, C1, C2 は電気容量がそれぞれC, 2Cの平行平板コンデンサー, C3 は極板間隔を変えることが できる平行平板の空気コンデンサーで,あらかじめ電気容量 が2Cになるように極板間隔を調節してある。Eは起電力E の電池, S, S2はスイッチ, Dはダイオードである。 初め, C1, C2, C3 の電荷は0で, S1, S2 は開かれている。Dは順方 向のみに電流を通し, そのときの抵抗値を0とする。 まず, S1 を端子1に入れて C1, C2 を充電した。このとき、 C の極板間の電圧はアである。 次に, S1 を端子2に入れて, 十分時間が経 S を開いた。このとき, AB間の電位差はイになっている。この状態で、 と C3 にはウの電気量が蓄えられる。 次に, S2 を閉じたまま, Cg の極板 に広げた。 この操作の後, Ca における極板間の電圧 V, 蓄えられている電気 の電気容量 Cx と,極板を広げるのに必要とした仕事Uを, C, Eなどを用い れを区別してエに示せ。 S₁ E 12 =C2 B 110. 〈4枚の導体板によるコンデンサー回路) 次のア~スソーチの中に入れるべき数や式を求めよ。 る文章を解答群から選べ。 ただし,数式はC, V, dのうち必要なも

解決済み 回答数: 1