学年

教科

質問の種類

物理 高校生

(2)なぜ(−L2)なるのですか?

実戦 基礎問 58 顕微鏡の原理 レンズ1 レンズ2 像2の位置 物体の位置 像1の位置 L₁ La "fi" fi た f2 図は, 焦点距離がとの 2つの凸レンズを組み合わせた 顕微鏡の原理を示している。 物 体はレンズ1の焦点の外側に置 かれている。 したがって, 物体 と反対側に物体の像 (像1とする) ができる。 レンズ1から像1までの距離 とするとこのときレンズ1の倍率は,レンズの公式を使って, fu, L を用いて表せば (1) となる。 次に,像1がレンズ2の焦点の内側に位置す るようにレンズ2を配置する。 すると,拡大された像 (像2 とする) が見え る。 レンズ2から像2までの距離をLzとする。 fz, L2 を用いると,像2の 大きさは像1の (2) 倍となる。 最終的に物体の像は, (3)倍に拡大され、 その像は物体に対して倒立している。 もしチェ=5.0[mm], L=150[mm], 2=10[mm], L2=250 [mm] ならば、この顕微鏡の倍率はおよそ (4) 倍 になる。また,この顕微鏡の鏡筒の長さ(レンズ1とレンズ2の間の距離) は (5) ] [mm] である。 (中央大) ●組合せレンズ 顕微鏡や天体望遠鏡のように, 複数のレンズ 精講 を組み合わせることによって, 小さな物体や遠くの物体を拡大 して見ることができる。 (例) 2つのレンズを距離だけ離して置いた場合 【参考 図の よる 第2 し、 第 1- ( 第1レンズによる像を,第2レンズに対する物体として、レンズの公式 を用いればよい。 第2レンズ 第1レンズによる像の, 第1 レンズとの距離を61 とすると, 第2レンズに対する物体の,第 第1レンズ a as ·b₁₁ -ar 2レンズとの距離は a2= l-b, 物体 第1レンズの像 第2レンズ である。 ここで,第1レンズに 第2レンズの物体 の像 よる像が実像のときは61>0, 虚像のときは 6,<0 である。第2レンズに 第2レンズとの距離を62, 第2レンズの焦点距離

回答募集中 回答数: 0
物理 高校生

Cはなんで浮くんですか? 球皮内の質量が減るとかですか?

AP APo P₁ = Po= RT RTo となる。これらの式より, 球皮内の気体の密度はpi = To と 表せる。 したがって, 球皮内の気体が受ける重力は P.Vg=poVgとなる。一方,Cの球皮内の気体は温度が上 がっても体積は一定であるため、浮力の大きさはF=poVg のま ま変化しない。 以上より, C が浮上する直前で球皮内の気体の温 度がT=Tのときに成り立つ力のつり合い式は, Tc poVg=p.Vg+Mg Po となる。 これより, Tc=- PV PV-M -To: 1.15.2000 1.15・2000-230 ・300≒333K 21 の答② 問6 気球Aについては, 球皮内の気体の質量が一定で,受ける重 力は一定である。また, 体積が一定であるため温度が上がっても 浮力は一定であり, 浮上することはない。 気球Bについては,気球Aと同様に球皮内の気体の質量が一 定で,受ける重力は一定 (po Vg) である。 一方, 問2で考察したよ うに,温度が上がれば体積が増加し, 浮力は大きくなる。 上昇後 の温度がTのときの体積をV, とすれば, 球皮内の気体について のボイルシャルルの法則より, P.V_PoVB となり,VB= To TO が得られる。このとき,受ける浮力はPV=Pomeg IV To なる。したがって, B. が浮上する直前の球皮内の気体の温度を T=TB として,このときに成り立つ力のつり合い式は, PoVBg=poVg+Mg TB Po To -Vg=poVg+Mg となり,これより, TB= =PoV+M POV -To=- 1.15・2000+ 230 1.15.2000 ・300=330 K 24 DVA となり,TB<Tcであることがわかる。 したがって, 気球Bのほ うが気球Cより先に浮上する。 以上より, Bが浮上して, 次にCが浮上し, Aは浮上しない。 22の答⑥ 第4問 コンデンサー 問1. 直流電源の起電力をVとする。 スイッチ1を閉じて十分に 時間が経過したとき, コンデンサーには電流が流れず0となるか ら、抵抗にかかる電圧も0となる。 このとき, キルヒホッフの第 2法則より, 電源の起電力とコンデンサーにかかる電圧が等しく

回答募集中 回答数: 0
物理 高校生

Cはなんで浮くんですか? 球皮内の質量が減るとかですか?

AP APo P₁ = Po= RT RTo となる。これらの式より, 球皮内の気体の密度はpi = To と 表せる。 したがって, 球皮内の気体が受ける重力は P.Vg=poVgとなる。一方,Cの球皮内の気体は温度が上 がっても体積は一定であるため、浮力の大きさはF=poVg のま ま変化しない。 以上より, C が浮上する直前で球皮内の気体の温 度がT=Tのときに成り立つ力のつり合い式は, Tc poVg=p.Vg+Mg Po となる。 これより, Tc=- PV PV-M -To: 1.15.2000 1.15・2000-230 ・300≒333K 21 の答② 問6 気球Aについては, 球皮内の気体の質量が一定で,受ける重 力は一定である。また, 体積が一定であるため温度が上がっても 浮力は一定であり, 浮上することはない。 気球Bについては,気球Aと同様に球皮内の気体の質量が一 定で,受ける重力は一定 (po Vg) である。 一方, 問2で考察したよ うに,温度が上がれば体積が増加し, 浮力は大きくなる。 上昇後 の温度がTのときの体積をV, とすれば, 球皮内の気体について のボイルシャルルの法則より, P.V_PoVB となり,VB= To TO が得られる。このとき,受ける浮力はPV=Pomeg IV To なる。したがって, B. が浮上する直前の球皮内の気体の温度を T=TB として,このときに成り立つ力のつり合い式は, PoVBg=poVg+Mg TB Po To -Vg=poVg+Mg となり,これより, TB= =PoV+M POV -To=- 1.15・2000+ 230 1.15.2000 ・300=330 K 24 DVA となり,TB<Tcであることがわかる。 したがって, 気球Bのほ うが気球Cより先に浮上する。 以上より, Bが浮上して, 次にCが浮上し, Aは浮上しない。 22の答⑥ 第4問 コンデンサー 問1. 直流電源の起電力をVとする。 スイッチ1を閉じて十分に 時間が経過したとき, コンデンサーには電流が流れず0となるか ら、抵抗にかかる電圧も0となる。 このとき, キルヒホッフの第 2法則より, 電源の起電力とコンデンサーにかかる電圧が等しく

回答募集中 回答数: 0