学年

教科

質問の種類

物理 高校生

なにがどうなってこの式になったのか分かりません。

I わる、 以下の空欄にあてはまるものを各解答群から選び, マーク解答用 紙の該当欄にマークせよ。 図1のように, z軸の正の向きに一様であるが時間とともに変化する磁 場をかける。この中に,長さLで絶縁体の細い糸の一方の端を磁場中の ある点0に固定し,もう一方の端に質量 M, 正の電荷 +α を持つ粒子を つなぐ。 時刻 t <0 のある時刻に. 糸が磁場と垂直に張った状態で,粒子 を磁場と糸に垂直な方向に初速で打ち出した。 粒子は磁場と垂直な平 面上を, 2軸の正の方から見て時計まわりに半径Lで円運動した。 粒子 の円に沿った運動については,粒子の運動の向きを正の向きとする。 円周 率をとし,粒子にはたらく重力は無視してよい。 +9 Bo 図1 B Bo ( 1 + kt ) t 問1時刻t<0では一様磁場の磁束密度は一定値であった。 このとき, Boであった。このとき, 糸がたるまずに等速円運動することのできる粒子の速さの最小値を Vo, 角速度を wo とすると, vo は (1) と表される。たとえば, Bo=1.0T として,回転している粒子が陽子と同じ質量 M=1.7×107kg と電荷 g=1.6×10-1Cを持つ場合, 角速度 wo は、 (2) rad/s となる。 ただ て,粒子の速さは光速よりも十分に小さいものとする。 時刻 t < 0 で粒 子に初速v=3v を与え, t>0では磁束密度をB=Bo(1+kt) (kは正 ω

解決済み 回答数: 1
物理 高校生

(2)なんですが、どうしてV0が0になるのか教えて欲しいです。

れでよくでる 図1のように、 東日本地域で記録タイマーを用いて重力加速度の大きさを測 定する実験を行った。記録タイマーをスタンドに固定しておき、記録タイマー に記録テープをセットした。 記録テープの一端にはおもりが取り付けてある。 記録タイマーは,打点が1秒あたり50回記録されるようになっている。 手で 記録テープを持って鉛直に垂らした後、記録タイマーのスイッチを入れてか ら、記録テープから手を放し落下させた。おもりが落下し始めた時刻を0とし おもりの持つ初速をDとする。 記録テープには図2のように打点が記録され 記録テープを5打点ごとに切り取り、記録テープの短い順に, A, B, C, D, E, F. ・・・・とする。 落下させた直後では記録テープAの打点が重なるので、隣り 合う打点がはっきりと区別できる打点(記録テープBの左端) をはじめの打点 として, 方眼紙に記録テープの短い順(Aは除く) に隙間が空かないように貼 り付けて図3のようなグラフを作成した。 図3の縦軸は5cm間隔で目盛が振っ てあり、横軸は時間を示し、 図2の記録テープBの左端の打点の時刻をもと して,原点と一致させてある。 また, 図3の描かれている直線は各記録テー プの端の中点をつなぐように引いた直線である。 記録 タイマー 記録 テーブ 正 図1 A B C D 5cm 40.0~ 30.0- 24.9 図2 20.0- 10.00- D .. E 805a 2013 E 時間 〔S〕

解決済み 回答数: 1
物理 高校生

2枚目の画像についてなんですが、C1の方を上を-Q1"、下を+Q1"としてやったんですがどうしても-になってしまいます。これはマイナスであってるんですか??なんか、一回目の作業の時とあんまり条件が変わらないのに変わるのが納得いかなくて、、 もし、V1がマイナスでQ1は上が+... 続きを読む

Date <コンデンサー> コンデンサーの切り替え 次の回路において、最初のコンデンサーは充電されておらず、S1 を閉じて、十分時間が経過した。 の後、S1 を開き、S2 を閉じた。そして十分に時間が過ぎたとき、S2を開いた。 この作業を繰り返し たとき C2 の電位差はいくらか。 また、この作業を繰り返したとき C2 の電位差はある値に収束して いくが、この値はいくらか。 Vo R C1(C) S₂ 2Vo R C₁₂(C) S.を閉じた時にたまる電気量Qは、 Q₁ = CVO 7", Vo Sを開き、S2を閉じ十分時間がすぎたときのC1C2に たまる電気量Q11Q2 とすると, Ho 電荷保存より Q1+Q2'=CVo-①. V₁ キルヒ 第2より 2Vo=-Vi'+Ve-2 12Vo また、電気量はそれぞれ. コンデンサーの解法のベース ⑩電荷保存の式(3) ②コンデンサーの数だけQ=CV ③もいくホック第2. で、スイッチ入前のエネルギーと ジュール熱とスイッチ後の保有の式 Q1の方は、 Itoi TQ - +カーか、どっちに帯か分か 深いので、仮定でおいてる。 Q1CVi', Q2'=CV2'一国 V2'V''+2Voより (本来) CV,'+C(Vi'+2vo)=CVo CV = -2 eu vi == Vo Ve = 2 Vo Q11=1/cvQ2=cveである K Vが一になった から、Qの符が -Q1 +Q₁" この操作をくり返すと、QはいつもCVで一定 の値を取る Vo c Vo 2vo Q1CV Sを開き、S2を閉じ十分時間がたったあと CVOに戻る C,Ceの電気量をQ,ごとすると、

解決済み 回答数: 1
物理 高校生

どうして電池の仕事がコンデンサーのだけになるんですか? 抵抗にも仕事しないんですか?? 教えて欲しいです🙇‍♀️

必解 107. <スイッチの切りかえによる電荷の移動〉 R R[Ω] 図のように,電圧 V [V], 2V [V] の電池 E1, E2, 電 S1/S2 気容量がいずれもC[F]のコンデンサー C1, C2,抵抗値 R[Ω] の抵抗 R, スイッチ S1, S2 が接続されている。最 初, スイッチ S, S2 は開いていて, C1, C2 には電荷は蓄 えられていないものとする。 また, 電池の内部抵抗は無 視できるものとする。 次の問いに答えよ。 (1) S を閉じてから十分に時間が経過した。この間に電池 E がした仕事を求めよ。 の C2. C[F] C1 C[F] T E1 VVX E2 Vo [V] 2V (V) (2)次に,S1 を開き S2 を閉じた。十分に時間が経過した後のC2 の両端の電位差を求めよ。 また,この間に電池 E2 がした仕事を求めよ。 [し] VOX (3) 続いて, S2 を開き, S1 を閉じた。 十分に時間が経過した後, S を開き S2 を閉じた。さら に十分に時間が経過した後の, C2 の両端の電位差を求めよ。 (4)この後,(3)の操作をくり返すと, C2 の両端の電位差はある有限な値に近づく。 その値を 求めよ。 コンデンサー [17 大阪市大〕 必解 108. <極板間の電場と電位〉 真空中で図1のように, 2枚の薄い金属板 A, B を間隔d 〔m〕 は なして配置した平行平板コンデンサーの両端に起電力 V [V] の電 池とスイッチSがつないである。 dは金属板の大きさに対して十分 A IB

解決済み 回答数: 1
物理 高校生

qEによって上に+が移動するから右にqvyBの力が働くならどうして最後下に働いた力によって左に力が働かないんですか?

電場や磁場の影音 電気量g(g0) の荷電粒子が時刻 t = 0 に原点0から初速度 = (u, 0)(o> 0) 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, で運動を開始した。 時刻 t でのこの粒子の位置は である。 = い (あ、 (x,y) ) 図2のように,x 平面に垂直に、紙面の裏から表に向かって,磁束密度B の一様な磁 場がかかっているとする。質量m, 電気量 q(q > 0)の荷電粒子が時刻 t = 0 に原点 0から初速度v=(-v0) (0)で運動を開始した。 この粒子が運動開始後に最 初に軸を通過するときの時刻はt= で、そのときの座標は う (x,y)=(0, 小巻 である。 平 初めてとなる時に初に置かれ 図3のように, y 軸方向正の向きに強さ E の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって,磁束密度B の一様な磁場の両方がかかっているとする。 質量m,電 気量 g(g> 0)の荷電粒子が時刻 t = 0 に原点0から初速度。 = (0,0)で運動を 開始した。この粒子のX軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ ax, ay とすると,運動方程式は TE ひ v x 図1 図2 → x この衝突が起きるには、エネ <号を満たす特別な値となる y B 図3 x

解決済み 回答数: 1
物理 高校生

(3)のどうしてmが2mになるんじゃなくてKが2kになるのか分かりません。普通に考えて重さ2倍にならないからkが2倍ですか?? あと、(3)のx=a/2のときのtなんですが、私の解き方のどこがダメなのか教えて欲しいです🙇🏻‍♀️答えが合わないんです😭3枚目です。 よろしくお... 続きを読む

必解 52. 2本のばねによる単振動〉 A 00000 P 図のように、なめらかな水平面上に質量mの物体Pが同 じばね定数をもった2つのばね A,Bとばねが自然の長さ にある状態でつながっている。 水平面上右向きにx軸をとり, このときの物体Pの位置をx座標の原点とする。 物体PをばねAのほうへ原点Oよりαだ けずらしてからはなす。 このとき物体Pは単振動する。単振動は等速円運動のx軸上への正 射影の運動であるといえる。時刻 t=0において, 物体Pはちょうどx座標の原点Oを正の 向きに向かって通過した。 ばねの質量はないものとして、次の問いに答えよ。 (1) 任意の時刻における物体Pの位置xおよび速度vを,等速円運動の角速度を用いて 表せ。 (2) 任意の時刻において物体Pが位置xにあるときの加速度αを, ωとxを用いて表せ。 また, 2つのばねAとBから受ける力Fを, kとxを用いて表せ。 (3) 物体Pがx=α に達してから, 初めて原点Oを通過するまでの時間 to と, 初めて x=. 1 =1aを通過するまでの時間を,kmを用いて表せ。 (4) 物体Pの運動エネルギーKの最大値とそのときの位置, およびばねの弾性力による物体 Pの位置エネルギーUの最大値とそのときの位置を表せ。 ただし, wやTを用いないこと。 (5) 物体Pが単振動しているときの速度と位置xの関係を求め, vを縦軸に, xを横軸にと ってグラフに示せ。このとき座標軸との交点を, a, k および を用いて表せ。また,物 [香川大 改 体Pが時間とともに図上をたどる向きを矢印で表せ。

解決済み 回答数: 1