学年

教科

質問の種類

物理 高校生

この問題のイはなぜ⊿yに1/2がついているのですか?等加速度運動の式だとついていないのが正解のように思えます

次の文章を読んで, れの解答欄に記入せよ。 なお, に適した式を問1、問2では,指示に従って解答を で与えられたものと同じ式を表す。た はすでに だし,以下では,弦が受ける重力は無視できるものとする。 必要であれば、以下の関係式を使 ってもよい。 01 のとき sin0≒0≒ tan 0 7 x 関数y=sin(ax+b) の傾きは xの関数 y=cos (ax+b) の傾きは =-asin(ax+b)(a,b: 定数) Ay Ax sin(a+β)+sin(a-β)=2sinacos β, sin (a+β)-sin(α-β)=2cos a sin β T (1) 図1のように,一定の大きさTの力で水平に張られた線密度(単位長さ当たりの質量)p の十分に長い弦を伝わる横波について考える。 図2のように, 微小時間 At の間に,波が 水平方向に微小な長さ x だけ進むとき, 弦を伝わる波の速さvv=ア と表される。 この間に、波の右端付近では, 長さ x の部分(以下ではこの部分をXとする) が波の進行 とともにわずかに持ち上げられる (変位する)。 微小時間 At の間, X は張力のみを受けて, 運動するとみなせる。 X の鉛直方向の運動を初速度 0, 加速度の大きさαの等加速度運動と 近似すると,Xの重心の変位の大きさ 1/24y , Ata のみを用いて, 1/1/24y=イ]と 表される。さらに, 長さ x の部分 X が受ける力の鉛直成分は,張力 T の鉛直成分 Tyの みであるから,運動方程式より,aは,p, Ax および T, を用いてa=ウと表される。 加えて,弦が水平となす角度が十分小さいとき, Ty=x Ayr と書くことができるので,”は To のみを使ってv= エ と表すことができる。 of T Ay Ax V Ty =acos(ax+b)(a,b: 定数) 図1 4x 4y T T

回答募集中 回答数: 0
物理 高校生

なぜ(2)のV2の電圧を求める計算で、3/9を掛けるのですか?C'の箇所の電圧が知りたいのになぜ分子がC1の値が入るのか分かりません。

図のように, C1=3.0μF, C2= 2.0μF, C3=4.0μF の コンデンサーを接続し, V = 30Vの電源につなぐ。 各 コンデンサーは, はじめ電荷をもっていなかったとし て,次の各問に答えよ。 X₁ 指針 XZ間の合成容量 は, XY間と YZ 間の直列接続と考 えて求める。 また, YZ間の並列部分 の合成容量を C' V=30V として, 回路は図のように改めることができ,直 列接続では,各コンデンサーに加わる電圧の比は, 電気容量の逆数の比に等しい。電 解説 (1) YZ間の合成容量 C' は, BOC' Y C₁ (1) XZ間のコンデンサーの合成容量を求めよ。 (2) YZ間の電圧を求めよ。 (3) C. C の各コンデンサーにたくわえられる電気量をそれぞれ求めよ。 - V₁ V₂- ² T ・Z X 3.0MF Ch ⑩0% 1/=/1/1 Y = C+C' C2 =30x 2.0MF 400F C3 2.0+4.0=6.0μF で, XZ間の合成容量Cは, 1 1 ・+ + C=2.0μF C C1 C' 3.0 6.0 VV BB Z (2) (2) XY 間,YZ間の各電圧 V1, V2 は電気容量 C, C' の逆数の比に等しい。 VICCI V2=VX. (3) (2)の結果から, V1 = V-V2=30-10= 20V C1, C2 のコンデンサーの電気量を Q1, Q2 とし Q=CV1=(3.0×10-) ×20=6.0×10-C Q2=C2V2=(2.0×10-) ×10=2.0×10-C OON V 30V (S 3.0 3.0 +6.0 Z =10V

未解決 回答数: 1