学年

教科

質問の種類

物理 高校生

物理 132番の(ケ)について質問です (ケ)のときコイルの誘導起電力はi1の向きと同じなので符号は正と考えたのですが回答では負でした。なぜ負になるのかを教えてください🙏

抵抗 R O スイッチS に比べて増加するか、するがす (i) コイル2の長さを軸方向に押し縮めた後に、 同じ実験をした。 (i) 鉄心を引き抜いた後に、同じ実験をした。 132. 〈コイルを含む直流回路> 〔19 大阪府大 改 からの距離 (m) うう。 導体棒中 ■における電場 反時計回りに, 電力が生じる。 印b の向 ■に電流が流れ 図1の矢印 はたらくと考え である。 [15 同志社大 〕 次の文章のアコに当てはまる数式または数値を 答えよ。 また、サに当てはまる語句を答えよ。 h c L b Ix d f R 図に示すように抵抗とコイルをつないだ回路で, スイッ チSを閉じたり開いたりしたときに回路に流れる電流を考 えよう。 電池の起電力をE. コイルの自己インダクタンス L. 2つの抵抗の抵抗値は図のようにr, Rとする。 電池 と直列につながれた抵抗値の抵抗は電池の内部抵抗と考 えてもよい。 また, 導線およびコイルの電気抵抗は無視できるものとする。 a +r ch S E スイッチSを閉じた後のある時刻にコイル, 抵抗値Rの抵抗を図の矢印の向きに流れる電 流をそれぞれ I, と書くことにする。 このとき, 抵抗値の抵抗を流れる電流はア となる。 経路 abdfgha についてキルヒホッフの法則を適用すれば、 電池の起電力と回路に 流れる電流の間にはE=イの関係が成りたつ。 一方,このときコイルを流れる電流が 微小時間 4t の間に 4 だけ変化したとすると, 経路 abcegha についてキルヒホッフの法則 を適用すればE= ウ の関係が得られる。 スイッチSが開いていて回路に電流が流れていない状態でスイッチSを閉じたとき、その 直後に回路に流れる電流は, L=エ=オとなる。したがって、スイッチSを閉 じた直後にコイルに生じる誘導起電力の大きさはE, r, R を用いてカと表される。 方, スイッチを閉じてから十分に時間が経過した後にコイルに流れる電流は、ムキ であり,このときコイルにはクだけのエネルギーが蓄えられることになる。 to D

解決済み 回答数: 1
物理 高校生

この問題の(4)で(ΔB/B)^2の項は無視してるのにΔB/Bの項は無視していないのはなぜですか?

133. <ベータトロン〉 時間変化する磁場による荷電粒子の加速について考えよう。 図のように、原点Oを通り互いに直交するx軸, y 軸, z軸をと る。 AB (1) 等速円運動する荷電粒子の速さを求めよ。 2軸の正の向きに一様で時間変化しない磁場が加えられてお り,その磁束密度の大きさをBとする。この磁場中に質量 m, 電荷 g (>0) の荷電粒子を入射したところ,xy 平面上で原点O を中心とする半径rの等速円運動をした。 y m x v 荷電粒子の円運動は,半径rの円形コイルを流れる電流とみなすことができ,円形コイル を貫く磁束はBで与えられる。このことを用いて, 磁場を時間変化させたときの荷電粒 子の運動について考える。ただし,この電流がつくる磁場は無視できるとする。円形コイル 内部と円形コイル上の磁束密度の大きさを時間とともに一様に増加させる。増加を開始して から微小時間 ⊿t 経過したとき,磁束密度の大きさは微小量⊿B (>0) だけ増加した。 なお、 (4)(5)では2つ以上の微小量どうしの積は無視して計算すること。 (2) 円形コイルに誘導される電場の大きさを求めよ。 闘 (3) 誘導された電場により荷電粒子の速さは増加する。 その理由を述べ, 速さの微小な増加 量⊿v を求めよ。 *(4)磁場の増加により円運動の半径は変わらないと仮定して,荷電粒子にはたらくローレン ッカの大きさと遠心力の大きさを計算し,ローレンツ力は遠心力より大きいことを示せ。 したがって,磁束密度を一様に増加させると軌道が円からずれる。 元の円軌道を保つには, 磁束密度の増加量を一様ではなくすればよい。 このとき,円形コイル内部の磁束密度の大き さの平均値をĒとすると,円形コイルを貫く磁束は2万で与えられる。微小時間⊿t経過 する間に, Bを微小量 4B 増加させ, 円形コイル上の磁束密度の大きさを⊿B'増加させたと ころ,もとの円軌道が保たれた。だだし、磁束密度の大きさはz軸からの距離と時間だけに 依存するものとする。 (8) AB4B' の比 AB AB' を求めよ。 〔22 大阪公立大〕

解決済み 回答数: 1
物理 高校生

至急‼️ (1)のm/sについて 黄色の線の部分の 8.83×10の4乗×10³mはどこからきたのですか

例えば,(2)のと 31 30 STEP 1 解答編 p.① 22% 24 21 29 8 合計 51 1 有効数字を考慮して、 次の値を計算せよ。 (8.64×10F)×27: (1) 月は地球を中心とした半径3.8×10kmの円周上を27日かけて公転する。 月が公転する速さは 何km/日か。 また, それは何m/sか。 ただし, 1日を8.64×10's, π=3.14 とする。 8838×104×10m 2 次のデー 園の長さ 8.bx (0km/日] 傾き (物体の速 PART 理で使う数値について 第1部 物体の運動 2 運動の ・問題集 p.3 015 ⑤ 4 × 10' STEP 1 1 (1)4桁 (2)2桁 (3)3桁 問題集 p.3 解説 (1)21.50 4桁 (2) 0.062 2桁 (3)9.05 × 10^3桁 -2 (4)102 05 10-3 ×2×10-12=1010-12=10-2 =102 2 (1)8.3×105 (2)5.1×10-2 (3)1.73×10-3 (4)-1.70 解説 (1)830470≒830000=8.3×105 (2)0.0506=0.051=5.1×10 - 2 (3)0.001733=0.00173=1.73×10-3 確認 問 問題集 p.5 ① 103 2 10-3 ③ 60 ④ 60 ⑤ 3.6 × 103 ⑦ 1.0 ⑧ 27×103 12 1.0 1 1.5×10-3 「! STEP O ⑨ 3.6 × 103 10 7.5 11 14 5.4 1.①速度 2. ② 変位 3.③ ベクトル ④ スポ 4. ⑤AとCとD ⑥AとC [STEP O 30m/s 問 問 (4) -1.6954-1.70 ・問題集 p.4 STEP O -2 ④10-6 (4) ⑧ 103 103 10 2.0 1.(1) 6.9 (2)② 0.64 (または 6.4×10-1) (3) 3 4.3 問題集 p.4 STEP 1 .2 x 10° cm³ (4)10m/s (5)7.2km/h 解説 (1) cm)=3.5×(10-2m) 2 m × 103x (1m) 3 × 103 × (102cm) _x103 +6cm3 × 10°cm3 xx 10°g_7.4×103g_ m = 10°cm3 g/cm³ K」は10のこと 36× 103m 西 250m/s ・問題集 p.6 1.①-250 ②-220 ③西 ④ 220 2.5 15 6 10 ⑦ 5 ⑧ 東 ⑨5 問題集 p.6 「! STEP O ・問題 1(1)8.8×10^km/日, 1.0×103m/s (2)2.0s 2×3.14×3.8×10km 27日 =88385.18・・・ ≒ 8.8×10km/日 1. ① 等速直線 ②等速度 (①,②は順不同) 3.④ 移動距離 4.(1)~(3)は記入例 8.83 × 10 × 103m 8.64 x 10's -=1.02... × 103 m/s 両辺を ゆえに, 1.0 × 103m/s x 102 (2)2×3.14×1 1.0 10 9.80 2×3.14×198 5 2×3.14v5 (2) (cm) 2×3.14149 7 100 =2.00... 80 ポイント! 2×3.14×2.24 ≒2.0 98=2x49=2×72 7 ゆえに, 2.0s (1) 物体の位置 A B C D 時刻 〔s〕 0.2 0.4 0.6 物体の位置〔cm) 19.9 43.9 67.8 91.8 0 2点間の距離〔cm) 2点間の平均の 速さ (cm/s〕 24.0 23.9 24.0 23.9 120 120 120 120 (3) (cm/s) f 120 100 物体の位置 60 速さ 80 60 40 40 20 20

解決済み 回答数: 1