学年

教科

質問の種類

数学 高校生

数学2B / 数列 イ の求め方がよくわかりません。 教えて頂きたいです🙇‍♀️

25 2 1.² 40x tod 2 5 5025 36x3 70 数学ⅡI・数学B 第3問~第5問は、いずれか2問を選択し、 解答しなさい。 第4問 180 50 (1) 太郎さんは次の操作を考えた。 ESP 操作 1 12 2種類のラーメンのスープが容器 A, B に分けて入っている。 [はじめの状態] 240×100 容器 A : 塩分濃度 1.6%のスープ 240 容器B: 塩分濃度 1.2% のスープ 360g) 太郎さんと花子さんは容器 A,Bのスープを使って, スープの塩分濃度を調整 しようとしている。 80.0 20.0 5025 96. -792 +200×100colrav 50% 容器 A から40gのスープを取り出して捨て、 次に, 容器 B から40gのスー プを取り出して容器Aに入れる。 このとき, 容器Aのスープの塩分濃度が 209.0 80$.028060 均一になるようによくかき混ぜる。 47³-32²2²-x) 98²-3x-7 (選択問題)(配点20) 1985.0 bet8.0 1018.0 ASTS.GO2.0 [はじめの状態] の容器 Aのスープ 240gに含まれている食塩の量は ア ANT CERD 2866 0DIO SUB.0 81.0 1061.0 $8310 A 8 19 96 O (2) イ イ であり、操作1を1回だけ行った後の容器Aのスープの塩分濃度は である。 なお, 操作1を1回行うたびに容器Bから40gのスープを取り出すので 回までである。 操作を行うことができる回数は 17 2 01 07 の解答群 200x1.6 1696 A 50810105005025 25 OCTLO 1840.0 の解答群 の解答群 200x 6 TEL5 ①8 1.6 100 1001.3 3 5 ELO SETAO AO CITI 2 1.2 +本日× 100-5 4 3 ②9 - 42 - 23. 15 12 24001.6 5700 = 3.6+2²2/10=3.68g 24 50 (3) 10 96 25 [1 ア 7 40 11 12 1.6 02 12 19.2 % 96 193 25 (数学ⅡⅠ・数学B 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

分かりません。教えてください!

計算問題の場合は必ず、 公式→数値代入→答えの順番で記入すること。 配点は全て2点 合計52点分 つぎ 問1 次の文章を読み「 内に当てはまる言葉を書き入れなさい。 (1) 時間や温度、面積や容積などのように、大きさだけで表される ① だかい (2) ①に対し、力や速度、磁界のように大きさと ② を持つ蓋を③ ひょうじゅうほう ASD 423225 (3) A=(ab)のような表示方法で表す方法をベクトルの ④ 表示という。 お +422 Asa 315 (4) A=ALΦのような表示方法で、大きさと位相差を表す方法をベクトルの ⑤ 表示という。 という。 (5) 交流回路において抵抗だけの回路は、電流と電圧vの位相差は無い(位相差0)。この状態を⑥という。 あちお (この回路において、抵抗R [Ω]、電圧V[V] と電流I [A]の関係は、I=⑦ で表す。 という。 あられ こうちゅう (7) 交流におけるインダクタンス (コイル)だけの回路において、電流の流れをさまたげる働きを持つものをX=WL=2Lです。この×⑧とい う。なお、この回路において電流は電圧vより位相が="[rad] 40 (8) XL [9] はインダクタンスL [H] と周波数 [Hz] の横に⑩する。 (9) 交流におけるコンデンサだけの回路において電気の流れをさまたげる働きを持つものをXc で表し、次のような式 1 1 @C 271C (10) Xc [2] は、 静電容量C [F] と周波数 † [Hz] の積に 13 で表す。このXを① ]という。この回路において電流は電圧vより位相がゆ=-radlだけ⑩ 2 10 する。 とには進むまたは遅れるのいずれかが入る。また、10分には比または反比例のいずれかが入る。 ② 3 4 8

回答募集中 回答数: 0
数学 高校生

数B 青チャート 複利計算と等比数列 下の写真の問題についてです。 指針の図の意味からわかりません。そもそも元金とは、と調べたものの理解できていない状況です。 等比数列のただの計算問題自体はできるため、この問題の福利計算についてとその指針の解説をしていただきたいです。 ... 続きを読む

基本例題 98 複利計算と等比数列 00000 毎年度初めにP円ずつ積み立てると, n年度末には元利合計はいくらになるか。 年利率をr, 1年ごとの複利で計算せよ。 ただし, r>0とする。 基本 96 指針▷ 「1年ごとの複利で計算する」 とは、1年ごとに利息を元金に繰り入れて利息を計算するこ とをいう。 各年度初めに積み立てるP円について, それぞれ別々に元利合計を計算し、 最 後に合計を求めることにする。 1年度末 2 年度末 (2) 年度末(n-1) 年度末 1 年度末 1 -P円積立 ・P円積立 t 図から, n 年度末までの合計は P(1+r)" + P(1+r)" ******. ・P円積立 等比数列の和 3年度末 解答 毎年度初めの元金は、1年ごとに利息がついて (1+r) 倍となる。 よって, n 年度末には, 1年度初めのP円は P(1+r)"円, 2年度初めのP円は P(1+r)"1円, したがって 求める元利合計 S は + P(1+r)+P(1+r)円 n年度初めのP円は P(1+r) 円 になる。 P(1+r){(1+r)^-1} (1+r) -1 Sn=P(1+r)"+P(1+r)"'+......+ P(1+r) P(1+r){(1+r)"-1} r ・P円積立 (円) P(1+r)* 円 P(1+r) 1円 P(1+r) *2 円 P(1+y)2 円 P(1+r) 円 円積立 右端を初項と考えると, S は初P(1+r), 公比1+y, 項数nの等比数列の和であ る。

回答募集中 回答数: 0
1/4