学年

教科

質問の種類

数学 高校生

微分に着いてです。総合問題30の方で質問があるのですが、類題では(画像3枚目)x=0になる場合も考えているのにこの問題では考えていないのはなぜですか...?教えて頂きたいです。

用いて表す。 総合 実数a, b に対し, 関数f(x)=x^+2ax3+(a2+1)x2-a3+α+bがただ1つの極値をもち, その 30 極値が0以上になるとき, a, b の満たす条件を求めよ。 f'(x)=4x3+6ax2+2(a2+1)x=2x(2x2+3ax+a2+1) [類 横浜国大] 本冊 数学Ⅱ 例題 218 まず、微分する。 f'(x) =0 とすると x=0, 2x2+3ax+a2+1=0 xの2次方程式 2x2+3ax+a2+1=0 ...... ①の判別式をDと ←① の実数解の個数が するとD=(3a)2-4・2・(a+1)=α²-8=(a+2√2) (α-2√2) X [1] D>0 すなわち a< 2√22√2 <a のとき カギとなる。それはD の符号によって変わって くるから,D>0,D=0, α+1>0より,x=0は①の解ではないから,①はx=0以D<0 に分ける。 外の異なる2つの実数解をもつ。 ゆえに、f'(x) = 0 は異なる3つの実数解をもつ。 この3つの解をα, B, y (a<B<y) とすると, f (x) の増減 x 表は次のようになる。 10 a B r ... ←本冊 p.347 の 参考 参 0 +0 0 + 照。 極大 \ 極小 > f'(x) f(x) 極小 よって, f(x) は極値を3つもつから、不適。 ◯[2] D0 すなわち a=±2√2 のとき ①は重解 x=- 2-2 3 3a == -α をもち 2x2+3ax+a2+1≧0 4 3 ←等号はx=- aのと き成り立つ。 (i) a=2√2のとき 3√√2 f'(x) = 0 は x=0, を解にもつから, 3√√2 XC 0 2 -2 f(x) の増減表は右のようになる。 f'(x) - 20 + 0 + よって, f(x) は x=0で極小となり, 極値0- を1つだけもつから,適する。 f(x) 極小 f √(3√2) (ii) a=2√2のとき f'(x)=0 は x=- 3√√2 2 0を解にもつか 3√√2 XC 0 ら,f(x) の増減表は右のようになる。 2 値を1つだけもつから,適する。 よって, f(x) は x=0で極小となり,極 f'(x) - 0 f(x) (3√2 2 20 ▼ 極小 > : +

解決済み 回答数: 1
数学 高校生

積分です。 問題ではこのように曲線−接線をしているのですが なぜ接線−曲線だとはならないんですか? 解説お願いします🤲🏻🙇‍♀️

124 面積(5) ~微分・積分のまとめ~ 座標平面上に曲線 C:y=x²-4x+8がある. (1) C上の点A (1, 5) における接線の方程式を求めよ . (2) Cと1で囲まれる部分の面積Sを求めよ. 解答 (1) f(x)=x²-4x+8 とすると, f'(x)=3x2-4 である. 点A(1,5)における接線は,f'(1)=-1より, y-5=(-1)(x-1) .. y=-x+6 (2) Cとlの共有点の座標は,連立方程式 |y=x²-4x+8 ...(1) |y=-x+6 の解である.②を①に代入すると x3-4x+8=-x+6 x3-3x+2=0 (x+2)(x-1)2=0 +O+BA-50 4 = S'₁(x²³-3x+2)dx= [ 1x¹__3x²+2x 3 5 (−2) (城西大) 35-45 2<x<1において,て 線分ABを2:3に 635 *=-2, 1 x+2>0, (x-1)2>0であるから, よって, Cとは右の図のようになっている. (x+2)(x-1)^>0である. 求める面積をSとすると, つまり, &&S=S₁₂1(x³-4x+8)−(−x+6) | dx A 0 1 TERASA 044- ] ₁ 3 =(1/12/+2)-1/12/16-12/24+2(-2)} = 0 - (-6)= 27 ·16· 4 x²-3x+2>0 A x-4x+8>-x+6 ると、 となるから, y=x4x+8は, y=-x+6より上にある 解説講義 ここまで本書を使ってがんばってきた皆さんには,本番で確実に得点してほしい総合問題 である. 本間で再確認すべき内容は次の3つである. 3次式の積分になるので、計算ミスに も十分に注意しよう. (i) 接線は110 で勉強したように y-f (t)=f'(t) (x-t) を用いる の曲線(あるいは直線) の共有点は連立方程式の解を求めればよい

解決済み 回答数: 1
1/2