学年

教科

質問の種類

数学 高校生

写真が横向きですみません。 黄色でマークしたところがわかりません。 なぜ3や5が出てくるのかが解説を見てもピンとこず,出てくる理由が知りたいです。あとなぜ3や5なのかもできれば教えていただきたいです。

正の約数の個数が28個である最小の正の整数を求めよ. (早稲田大) へ、 解答 28=2×2×7 であるから, 正の約数の個数が28個である整数 N を素因数分解すると、 (ア) N = d (1) N=ab () N=a'b'c' (ただし,p, g, rは自然数である.また, a, b, c は相異なる素数である) のいずれかの形で表される. (ア) N=d” のとき,約数の個数は+1であるから,p+1=28より,p=27である. このとき最小のNはa=2とした 227 である. (イ)N= dba (p≦q) のとき, 約数の個数は, (n+1) (g+1) であり、 (n+1)(g+1)=28 これより, 2≦p+1≦g+1に注意すると, (p, q)=(1, 13), (3, 6) abをできるだけ小さくするためには, a≧b とすべきであり, a,bは相異なる 素数なので、 α=3, b=2としたものが 最小である ・(p,g)=(1,13) のとき, 最小のNは,N=31.213 である. 2 ・(p,g)=(36)のとき,最小のNは, N=33.2°(=1728) である. (ウ) N=abic (p≦a≦r) のとき,約数の個数は(n+1) (g+1)(+1) であり, (n+1)(g+1)(r+1)=28 .. (p, q, r)=(1, 1, 6) このとき,最小のNは,N=5'31.2=(960) である. (ア)(イ),(ウ)より、約数の個数が28個である最小の正の整数は,960

解決済み 回答数: 1
数学 高校生

数Aの約数と倍数の問題です この問題の「つまり」の部分のあとの波線の部分 がどうしてそうなるのかが分かりません

例題 112 n! に含まれる素因数の個数 一解したとき、 次の問いに答えよ。 から30までの自然数の積 30!=30.29········ 2.1 をNとする。 Nを素 000 素因数2の個数を求めよ。 素因数の個数を求めよ。 p.426 基本事項 3 Nを計算すると、末尾には 0 が連続して何個並ぶか。 HART & THINKING □=1.2.3......(n-1)nの素因数々の個数 からまでのんの倍数 の倍数 の個数の合計 130には, 右の表に付いたの数だけ2が掛け合 わされる。つまり、 30 以下の自然数のうち、2の倍数, …………… の個数の合計が, 30!に含 2の倍数 23の倍数, まれる素因数2の個数になる。 ? 2 4 6 8 16 28 30 20000 0 00 22 0 0 0 なお、以下の自然数のうち, αの倍数の個数は, n をαで割った商として求められる。 23 O 0 24 □ 末尾に0が1個現れるのはどのようなときだろうか? 1から30までの自然数のうち 2の倍数の個数は, 30を2で割った商で 15個 22 の倍数の個数は 30を2で割った商で 2 の倍数の個数は, 30を2で割った商で 7個 22の倍数は素因数2を 3個 2個もつが、2の倍数と して1個 22の倍数と 2 の倍数の個数は 30を2で割った商で 1個 よって、 素因数2の個数は 15+7+3+1=26 (個) して1個数えればよい。 (1)と同様に5の倍数は6個, 5の倍数は1個あるから,それぞれ30÷5,30÷5" 素因数5の個数は 6+1=7 (個) (1)(2)から,Nを素因数分解したとき, 素因数2は26 個, 素因数5は7個ある。 2・5=10であるから,Nを計算すると、 その数の末尾には 0が連続して7個並ぶ。 の商。 素因数25を掛けると 末尾に0が1つ現れる。 素因数5の個数分だけ 0が並ぶ。 風料

解決済み 回答数: 1
数学 高校生

32(3)について質問です。 下線部、a+bがpの倍数ならばa^2+b^2もpの倍数と言えるのはなぜですか?

32 素数 を3以上の素数, a, b を自然数とする. ただし, 自然数nに対し, mnがp の倍数ならば, mまたはnはの倍数であることを用いてよい。 (1)a + bab がともにかの倍数であるとき, αもの倍数であ ることを示せ. (2)a+bとα+62がともにかの倍数であるとき, aもの倍数 であることを示せ. (3) α+b2a+bがともに の倍数であるとき,aとはともにゅの倍 (神戸大) 数であることを示せ. 精講 素数とは, 1とその数以外の正の約数をもたない2以上の整数 のことです. 具体的に素数は2,3,5,7,11, 13, 17, 19, ..のような整数です. なお, 1もその数 (つまり1) 以外に正の約数をもちませんが, 1は素数の仲間 に入れません. 2以上の整数は,素数を用いて, nk ~ Di71.p272 ・p373kkkは異なる素数で, nk は自然数 の形に表すことができます. これを素因数分解といいます。 たとえば,300 は 300=22.31.52 というように素因数分解することができます. しかし、素数』は素因数分解してもっとなるだ けです.つまり, 素数は,もうこれ以上素因数に 分解できない整数ということもできます。 解法のプロセス 整数a, b の積αbが素数の 倍数 2つの正整数a, bの積 abが素数の倍数で あるとき αがの倍数またはbがの倍数 だといえます. α または6がの倍数 (1)a+bがかの倍数であるから, a+b=pl (lは自然数) と表すことができる. 解答 ......① けがの倍数である.

解決済み 回答数: 1
1/91