学年

教科

質問の種類

数学 高校生

一対一対応の数2の積分の問題で、(3)について質問したいです。 a≧1の時に増加するの意味が分かりません。 また、なぜ0≦a≦1の時に微分をして極小値を求めたら最小値が求まるのかも意味が分かりません。解説してもらいたいです😭お願いします😭

3 定積分関数/区間固定型 —— 0以上の実数aに対して,I(a)=faldr とおく。 (1) a≧1のとき, I (α) を求めよ. (2) 0≦a≦1 のとき, I (α) を求めよ. (3) I (α) の最小値を求めよ. (神戸大文系-後/一部変更) 積分変数以外は定数 積分計算において,積分変数 (dr と書いてあったらェ) 以外は定数である. Sュー☆ではaは定数つまりS|-4|dr [a=2の場合] のようなものだと思って, O2と同様に絶対値をはずして計算すればよい。 αの値を決めるごとに☆の値が決まる,ということが 理解できれば 「☆はαの関数意味でI(α) と書いてある」こともわかるだろう. 解答 1(a) = f (a²-r²) dr-[4-3³] (1) 4≧1のとき,0≦x≦1でrd'≦0 だから dx= y=(x+a)(x) T Y y=x²-a² <y=x²-a² l£x=ax =a²- 1 3 気をつける 01 a/ だから, (2) O≦a≦1のとき|r-q2}={a°」? (O≦x≦a) y=x-a lx²-a² (a≤x≤1) YA y=x²-a² 1(a)=√ª (a² — r²) dx + f (x²-a²) dx 0 1 48 = x³ a 3 3 14 +a2x· 3 a3 4 3 1 3 るので, x=αが積分区間 x=0~1に含まれるかどうか (つ まり, 0≦a≦1かどうか)で場合 わけをする.この例題では≧1, 0≦a≦1 が与えられているが,こ の場合わけは自力でできるよう にしておきたい。 ( ←第2項の積分区間の上端と下端 を入れかえ、被積分関数を -1倍. (220) (1) (S232 \) (3) a≧1のとき,(1)よりI (α) は増加する. 0≦a≦1のとき,(2)よりI'(α)=4a2-2a=2a (2a-1) であるから, 増減は右表のようになる. よって, 求める a 0 I'(a) 最小値は 1(1/2) 41 1 1 2-3+4 + = 38 4 3 12 I(a) 1/2 1 + 0 4 - (2)\

未解決 回答数: 1
数学 高校生

面積を求める際のこのようなグラフは 極値やX軸との交点など求めてからグラフを書きますか??

338 00000 基本 211 基本例題 215 3次関数のグラフと面積 関数 y=2p-s-2x+1のグラフとx軸で囲まれた部分の面積を求めよ。 CHART & SOLUTION 面積の計算 まずグラフをかく ① 積分区間の決定 3次関数のグラフと面積の問題でも、方針は2次関数の場合と変わらない。 3次関数のグラフとx軸の交点のx座標を求めて、 積分区間を決める。 →交点のx座標は 2.x-x-2x+1=0 の解。 inf面積を求めるために解答にグラフをかくときは, 曲線とx軸との上下関係と、交点の 座標がわかる程度でよいから、微分して増減を調べる必要はない。 よって ② 上下関係を調べる 曲線 y=2x^²-x^²-2x+1とx軸の交点のx座標は, 方程式 2x-x-2x+1=0 の解である。 f(x)=2x-x-2x+1 とすると f(1)=2-1-2+1=0 f(x)=(x-1)(2x2+x-1) =(x-1)(x+1)(2x-1) f(x) = 0 を解いて x=1, -1, -1/1 ゆえに, 曲線は右の図のようになるか ら 求める面積Sは s=S² (2x²− x² −2x + 1) dx +₁(−(2x²-x²–2x+1)} dx -1 - [£* - - * + x] - [ € - -ײ+x] x2- 3 y4 1 PRACTICE 215 8 次の曲線とx軸で囲まれた部分の面積を求めよ。 (1) y=x-5x2+6x 0 1 1 x 2 −²² (4- )*- } ( )*-( )*+¦ } -(² + 3-2)-(2-3) 71 48 因数定理 ◆組立除法により 2 -1 -2 ~x/d++) f(x)=x²(2x-1)-(2x-1) =(2x-1)(x-1) =(2x-1)(x+1)(x-1) 2 1-1 2 1 -1 0 あるいは 11 としてもよい。 ← 2つ目の定積分は,一を 外に出すと, 1つ目の定 積分と被積分関数が同 じ。 ← [F(x)] - [F(x)]* (2) y=2x3-5x2+x+? =F(c)-F(a){F(b)-F(c)} =2F(c)-F(a)-F(b) inf 定積分は分数計算など煩雑な計算が多い。 解答の(*)のようにF(x) に代入する値は まとめて,計算の工夫をする。 The The 7:16-07-2:12 に 1-12 051 曲線 y=-x+5x 上に点A(-1, -4) をとる。 日本 例題 216 曲線と接線で囲まれた部分の面積 el (1) 点Aにおける接線の方程式を求めよ。 (2) 曲線 y=-x°+5x と接線l で囲まれた部分の面積Sを求めよ。 CHART & SOLUTION (2) まず, 3次曲線と接線の共有点のx座標を求める。 f(x)-g(x)=a(x-a)(x-β)が成り立つ。 3次曲線 y=f(x)(x2の係数がα) と直線y=g(x)がx=αで接するとき, (ここで、Bはy=f(x) と y=g(x) の接点以外の共有点のx座標) (1) y'=-3x2+5 であるから, 接線l の方程式は y-(-4)={-3(-1)2+5}{x-(-1)} 11 すなわち y=2x-2 (②2) 曲線と接線lの共有点のx座標は、方程式 x+5x=2x-2 すなわち x-3x-2=0 の解である。 ゆえに (x+1)(x-2)=0 ゆえに,図から求める面積Sは よって x=-1,2 s=S_{(-x+5x)-(2x-2)}dx = f_(-x+3x+2)dx =-X+2x+2x27 3 4 y₁ el ORACTICE 216 曲線C:y=-x+4xとする。 部 x 基本 214215 INFORMATION 定積分の計算の工夫 s=f(x+3x+2)dxの計算はp.319 基本例題 203 と同様に,次のように計算す るとスムーズである。 s=S_(-x'+3x+2)dx=-(x+1)(x-2)dx (4) 339 曲線と接線ℓ は x = -1 で接する (重解をもつ) から, (x+1)^2を因数に もつ。 よって, x³-3x-2 =(x+1)^(x+α) とおけ,定数項を比較し てa=-2 =f(x+1)^{(x+1)-3}dx=-S°_^{(x+1)-3(x+1)}dx(x+1) の形をつくる --[(x + 1)²-(x + 1)² -- +27=4 = [(x+1)* 81 C上の点(13) における接線と曲線Cで囲まれ 7章 25 LEI 積

未解決 回答数: 1
数学 高校生

接戦の方程式ってなぜこのようになるんですか?💦

O 基本例題 248 放物線と | 放物線C:y=x2-4x+3上の点P(0, 3), Q (6, 15) における接線をそれぞれ 基本246,247 |ℓ, m とする。 この2つの接線と放物線で囲まれた図形の面積Sを求めよ。 指針 まず, 2接線l m の方程式と, l, m の交点のx座標を求め, グラフをかく。 この交点のx座標を境に接線の方程式が変わるから, 被積分関数も変わる ・被積分関数は, (x-α)” の形で表される。 よって, 定積分の計算では, S(x-a)'dx=(x-a)² -+C (C は積分定数) を利用すると,かなりらくになる。 3 y=x2-4x+3 から y'=2x-4 解答の方程式は,y-3=(2・0-4)(x-0)からy=-4x+3 m の方程式は, y-15=(2・6-4)(x-6) から y=8x-33 lとmの交点のx座標は, -4x+3=8x-33 を解くと 12x-36=0 PAA ゆえに x=3 よって, 求める面積Sは S={(x-4x+3)-(-4x+3)}dx +{(x-4x+3)-(8x-33)}dx = S²x²dx+S₁ (x-6)²³dx - [ ²³1 + [(x = 60² 1 3 =9+9=18 uhl (x = S 530 -S{(2x+3)(x-4x+3)}dx 24+S(x2-6x)dx 9 4 =54+ x(x-6)dx -54-11 (60)=54-36-18 P |15 13 のが 3 m 14800 n^e 参考lとmの交点をRとし, 2点P, Q を通る直線をnとす る。また、Cとnで囲まれた部分の面積をSとすると,求 める面積Sは S=APQR-S₁ R(3, -9), n:y=2x+3であるから 1 S= ((15-3)+(3-(-9)}]* *1 22 6 x 23(²x-(x8-0017+x5 【曲線 y=f(x) 上の点 (a, f(a)) における接 線の方程式は y-f(a)=f'(a)(x-a) 曲線と接線の上下関係 0≦x≦3では x2-4x+3≧-4x+3 3≦x≦6では x2-4x+3≧8x-33 f(x-a) dr [ (x=a)² + C 3 C- YA |15 3 S₁ 0 -T 169-2 (*) APQR =APQT+APRT 底辺PTは共通。 177 2つの (2) 指針 解答

回答募集中 回答数: 0
数学 高校生

一枚目の黄色の文が理解できません これを読んでもなぜこの解法を使うのかまだわかってないです、 264番の解法が2枚目,3枚目です! 教えてほしいです

点 積を 州大] 30,210 ま と る求 る。 例題221 つの放物線を C:y=(x-1)2, C2:y=x2-6x+5 とする。 2つの放物線と共通接線で囲まれた部分の面積 とC2の両方に接する直線ℓの方程式を求めよ。 GC と C, および直線とで囲まれる部分の面積を求めよ。 ((2) OLUTION CHART 曲線と接 接点のx座標が yi-y=0 の重解・・・・・・ y=(x-1)2 から y'=2(x-1) よって, C上の点(a, (a-1)2) における接線の方程式は (1) 2つの放物線の共通接線の求め方は, p.264 重要例題 177 のようにいろいろ な方針が考えられるが,ここでは、面積の定積分を計算するときに2つの接点 のx座標が必要となるから、2つの曲線の接線が一致する,と考える。 (2) 被積分関数が (x-α) の形で表されることに注意 (p.320 基本例題 213 参照)。 ......] y-(a-1)=2(a-1)(x-α) y'=2x-6 y=x2-6x+5から よって、C2 上の点(6,52-66+5) における接線の方程式は y-(b²-6b+5)=(26-6)(x−b) 直線①②が一致するための条件は 2(a-1)=26-6- ③ かつ - d² +1 = -62+5 ④ に代入して すなわちy=2(a-1)x-d+1 3 すなわちy=(26-6) x-62+5 ③ から a=6-2 よって 6=2 このとき ① から 求める直線l の方程式は 0とC2の交点のx座標は (x-1)=x²-6x+5 の解 であるから J-2 x=1 ゆえに 求める面積をSとすると右の図から S=S'{(x− 1)²−(−2x+1)}dx_ )}dx 重要 177. 基本 213 a=2-2=0 y=-2x+1 -(b-2)2+1=-62+5 +S}{x²−6x+5−(−2x+1)}dx X =Sx³dx + S²(x − 2) ³dx = [*²] + [(x −²””] ...... 2 329 0 |_Y = (1-1) C₂) C:y=x2-6x+15 とする。 XY 7章 25 ^y=x²-bres

未解決 回答数: 1
1/6