学年

教科

質問の種類

数学 高校生

赤丸で囲ったところあたりで求めるbnとは何かよく分かりません。 そしてb1+Σ(1/k- 1/k+1)の計算過程も理解が出来ません…。 分かる方がいたら教えてください!!🙇‍♀️

408 重要 例題 40 f(n)an=bn とおく漸化式 次の条件によって定められる数列{a}の一般項を求めよ。 an+1 an (1) a₁=1, n n+1 CHART & THINKING 0000 (2) a1=2,nan+1=(n+1)an+I 基本 21 2 an+1, an の係数がnの式の問題では, αn+1, αan の係数がそれぞれ f(n+1),f(n)となる ように式変形をする。 1 (1) 与えられた漸化式は, anの係数が n+1' n n(n+1) を掛けることで an+1 の係数がーとなっている。両辺に an+1 n an n+1 → (n+1)an+1= nan si 隣接 につ bxa と変 とこ この an の係数がn, an+1 の係数が (n+1) となる。 (2) (1) と同じように, f(n+1)an+1=f(n)an+(nの式) の形にするには, 両辺をどのよう な式で割るとよいかを考えてみよう。 解答 源化式をとる数をとると (1) 両辺に n(n+1)を掛けると - (n+1)an+1=nane bn = nan とおくと bn+1=bn また, b1=1.α=1 から 6n=6n-1==b1=1 bn+1=(n+1)an+1 したがって bn=1 よって an= = bn _ 1 n n S (2) 両辺を n(n+1)で割ると an+1 an 1 + n(n+1)=0 n+1 n n(n+1) an 1 bn= とおくと bn+1=bn+ An+1 bn+1= n よって n(n+1) n+1 read ゆえに 1 1 bn+1-bn また b=q=2 n n+1 1 n(n+1)nn+1 = よって, n≧2のとき bn=b14 b=6+ (½-2±1) −2+ (1-1)=3-12 k= k+1 n b=2であるから,この式は n=1のときにも成り立つ。 数列{bm+1-6m} は,数 列 { bm} の階差数列。 ゆえに n よってan=nbn=3n-1 PS

未解決 回答数: 1
数学 高校生

この問題の方針を簡単に説明してくださる方いませんか??

390 要 例題 28 格子点の個 DO 座標がともに整数で 次の連立不等式の表す領域に含まれる格子点(x座標, y) ある点)の個数を求めよ。 ただし, n は自然数とする。 (1)x2,y2, x+2y≦2n CHART & SOLUTION 格子点の個数 (2) x≥0, y≤n², y=x² 直線xk または y=k上の格子点を求め加える 「不等式の表す領域」は数学Ⅱの第3章を参照。 n=2のとき 具体的な数を代入してグラフをかき, 見通しを立ててみよう。 n=3 のとき (1) n=1のとき y y y4 x+2y=2.1 x+2y=2.3. x+2y=2.2 3 13-20 UC29 -1 -10 1 2 0123456 n=1のとき 1+3=4, n=2のとき 1+3+5=9, n=3 のとき 1+3+5+7=16 一般 (n) の場合については, 境界の直線の方程式 x+2y=2n から x=2n-2y よって, 直線 y=k (k=n, n-1,..., 0) 上には (2n-2k+1) 個の格子点が並ぶから、 (2n-2k+1)において, k = 0, 1, ……, (2) n=1のとき nとおいたものの総和が求める個数となる。 n=3のとき -y n=2のとき y=x2 -yA y=x2+ y F(St 9 [ホ y=x2 I -1 0 x n=1のとき n=2のとき n=3 のとき 一般 (n) の場合については、直線x=k (k=0, 1, 2, x 4コ 0 ( + . + (1−0+1)+(1-1+1)=3, -4 (S)-1- . + 2- 3- x (4-0+1)+(4−1+1)+(4-4+1)=10, (9-0+1)+(9-1+1)+(9-4+1)+(9-9+1)=26 -0 の美 ものの総和が求める個数となる。 1個の格子点が並ぶから,(n-k+1)において,k= 0, 1, -1,n)上には nとおいた また,次のような図形の対称性などを利用した別解も考えられる。 解三角形上の格子点の個数を長方形上の個数の半分とみる。 (1)の (2)の別解 長方形上の格子点の個数から、 領域外の個数を引いたものと考える。 このとき、対角線上の格子点の個数を考慮する。 解

回答募集中 回答数: 0
数学 高校生

(3)の問題です。なぜa=25/4を境に場合分けをするのかが解説を読んでもわかりません。どなたか教えていただけないでしょうか。

完答への 道のり AB 正三角形AQR ができる条件を場合に分けて © E が点 Q, C が点Rとなる確率を求めることができた。 正三角形AQR ができる確率を求めることができた。 白玉だけを取り出して正三角形AQR ができる条件をもれなく考えることができた。 F 白玉だけを取り出して正三角形AQRができる確率を求めることができた。 条件付き確率を求めることができた。 B4 図形と方程式 (40点) 座標平面上に円 C:x2+y2 = 25 と直線l: x+2y=10 があり、連立不等式x+2y10 fx2+y2 S25 A の表す領域をDとする。 (y≥0 (1)円Cと直線lの共有点の座標を求めよ。 また, 領域Dを図示せよ。 (2) (6,0)を通る直線の中で,円Cと y>0の範囲で接するような直線の方程式を求めよ。 (3)aは 6≦a≦10 を満たす実数とする。 点(x, y)が領域D内を動くときの最小 値を とする。 αの値で場合分けをして, mをαを用いて表せ。 x-a 配点 (1) 10点 (2) 12点 (3) 18点 解答 (1) C:x+y2 = 25 ① l VA l: x+2y=10 C ②より x=-2y+10 ②' ②'を①に代入して (10-2y) +y2=25 2-8y+15=0 (y-3)(y-5)=0 y=3,5 44 - 15 (4, 3) 0 5 x -5 円Cと直線lの共有点の座標は、 連立方程式①、②の実数解である。 解答ではxを消去して yの2次 方程式を導き、それを解いて共有点 のy座標から求めたが,yを消去し てx座標から求めてもよい。

未解決 回答数: 1
数学 高校生

[1]の、a5=1、b5=1とありますが、 どうしてr=1を代入しただけでa2やa3〜〜ではなく、 a5、b5となっているかを教えてください!!🙇‍♀️

372 重要 例題 14 等差数列と等比数列の共通項 00000 〔神戸薬大] 初項1の等差数列{an} と初項1の等比数列{bn} が as=b3, a=ba, st を満たすとき,a2, by の値を求めよ。 CHART & SOLUTION 等差数列と等比数列の共通項 条件から、初項、公差d, 公比の関係式を導く 基本1 数列{an}, {bm} ともに初項は与えられているから,{an} の公差d,{6}の公比が の関係式 を導く。 導いた関係式には2やが含まれるからを消去するのは困難である。 まずは dを消去してrを求めよう。 解答 数列 {an} の公差をd, 数列{bm} の公比をとすると an=1+(n-1)d, bn=1zn-1 ① よって ゆえに よって ag=bs から 1+2d=2 a4 = b4 から ②③から 1+3d=3 3(2-1)=2(3-1) 2-32+1=0 (r-1)(2r2-r-1)=0 (r-1)2(2r+1)=0 1 したがって r=1, *S 未 dを消去する方針。 ②から6d=3(-1) ③から6d=2(-1) 22-r-1 =(x-1)(2x+1) 2 [1] r=1 のとき ② から d = 0 このとき,① から αs=1, bs=1 ? 240.1 [2]=-1/2 のとき ② から d=-- 元利合計Sは、 これは, α5≠bs を満たさないから、不適。 3 8 このとき ①から 8 a=1+(5-1)(-3)--. -(-)-16 b5 = (1)円 和で すべてのnに対して an=1,6n=1 -αn=1+(n-1)( 2 \n-1 これは, as≠65 を満たしている。 [1], [2] から, 求める az, b2 の値は a2=0, b2= b2=-- 1 2 x10.1++2 10.110.1

解決済み 回答数: 1
1/1000